
Implementation of the Yin-Yang grid
in PENCIL

Matthias Rheinhardt

August 10, 2016

Rheinhardt



Motivation

Models in spherical geometry with full θ − φ extent

θ = 0 can’t be a coordinate line

ghost zones for θ boundaries lie beyond the poles

hence: define grid as θi = ∆θ/2 + i∆θ, i = 0, . . . , π/∆θ− 1,
for grid point at φj fill ghost zones with values from φj + π
implemented by Dhruba/Fred

problem: for θ grid lines close to poles
stepsize in φ direction r sin θ∆φ gets small
=⇒ ∆t gets (too) small
possible solution:
make grid non-uniform in θ, e.g.:

Rheinhardt



Yin-Yang grid for simulations over the full θ − φ extent

Alternative:
cover spherical surface by 2 overlapping identical grids
axis singularity of one grid covered regularly by the other
grid cell size roughly uniform
tb added: communication between Yin and Yang;
algorithms internal to each grid untouched
=⇒ code extensibility

decomposition without with overlap
Rheinhardt



coordinate ranges

π/4 ≤ θ ≤ 3π/4, ∆θ = π/2
π/4 ≤ φ ≤ 7π/4, ∆φ = 3π/2

transformation matrix

M =

−1 0 0
0 0 −1
0 −1 0


M = MT = M−1 !

=⇒ only one transformation

PENCIL CODE: possible strategies
double the variables
double the processors
=⇒ modification of communication only

Rheinhardt



Implementation in PENCIL CODE

switch on by lyinyang=T
initialize

check constraint nprocz = 3 nprocy
set implicitly nprocs = 2 ncpus,
create a MPI communicator for each grid:
MPI_COMM_GRID 6= MPI_COMM_WORLD

for boundary processors: set outer neighbours
transform and communicate ghost point coordinates
calculate interpolation parameters
transform global input data

run
transform (vectors) and interpolate variables
communicate for ghostzone update
correct averages

diagnostics
transform/interpolate data on Yang grid

Rheinhardt



Problems

standard layout:
each processor has exactly 8 neighbours in θ − φ plane
=⇒ restrictions for processor numbers

4 x 12 8 x 24

2nd layer entered !

Rheinhardt



Problems

standard layout:
each processor has exactly 8 neighbours in θ − φ plane
=⇒ restrictions for processor numbers

4 x 12 8 x 24

2nd layer entered !
Rheinhardt



Implementation in PENCIL CODE

in code:
additional modules yinyang, yinyang_mpi,
noyinyang

+ additional subroutines in general, mpicomm

in setup:
YINYANG = yinyang (default noyinyang)
ncpus — number of processors for one grid
(but in submit script: 2*ncpus!)

Rheinhardt



Implementation in PENCIL CODE

in visualisation:
object of pc_read_var contains usual variables,
but with additional dimension of extent 2 for the two grids

Yin-Yang specific:

YZ, dimension(2,*) - a linear list of (θ, φ) coordinate pairs
for the merged grids; technically an irregular grid

TRIANGLES, dimension(3,*) - a list of triangles describing
the triangulation of the merged grid

UU_MERGE, dimension(nxgrid,(size(YZ))(2),3) - velocity
defined on the merged grids

Rheinhardt



Implementation in PENCIL CODE

use merged data by, e.g.:

contour, reform(v.uu_merge(ir,*,0)), v.yz(1,*),

v.yz(0,*), /fill, nlev=30, tri=v.triangles

stellar convection:

with grid

Rheinhardt



Implementation in PENCIL CODE

Problem
discontinuities/whiggles at grid interface
example: decay of dipolar meridional flow

ur ωr

Rheinhardt



Implementation in PENCIL CODE

Solution: biquadratic interpolation?

f (y , z) = a0 + a1y + a2z + a3yz + a4y2 + a5y2z + a6yz2 + a7y2z2

not unique:

How to weigh the 4 variants?

Rheinhardt



Implementation in PENCIL CODE

Solution: biquadratic interpolation?

f (y , z) = a0 + a1y + a2z + a3yz + a4y2 + a5y2z + a6yz2 + a7y2z2

not unique:

How to weigh the 4 variants?

Rheinhardt



Implementation in PENCIL CODE

Solution: biquadratic interpolation?

f (y , z) = a0 + a1y + a2z + a3yz + a4y2 + a5y2z + a6yz2 + a7y2z2

not unique:

How to weigh the 4 variants?

Rheinhardt



Implementation in PENCIL CODE

Solution: biquadratic interpolation?

f (y , z) = a0 + a1y + a2z + a3yz + a4y2 + a5y2z + a6yz2 + a7y2z2

not unique:

How to weigh the 4 variants?

Rheinhardt



Implementation in PENCIL CODE

Status
initialization & communication — done
linear & quadratic interpolation — in testing
z averages: for diagnostics — in debugging

for PDEs — in coding
y and volume averages — missing
slices: yz – done, other — missing
visualization: reading snapshots, z averages & yz slices

— done

Rheinhardt


