
Getting started with Git for the P C

The P C Team

19-Jun-2016

1 Preparation

1.1 SSH key

[You can work without an SSH key. In that case you check out with ‘git clone
https://github.com/pencil-code/pencil-code.git’. The downside is that you will be
asked for your Github password each time you push a commit to the server.]

1. Create a dedicated SSH key for Github1:

ssh-keygen -f ~/.ssh/github-key

You will be asked for a passphrase. Depending on your usual practice, you can enter
a passphrase or leave it empty.2

2. Upload the public key to Github

• Log in at Github and navigate to the settings page

• Select ‘SSH and GPG keys’

• Click ‘New SSH key’

• Upload the key ~/.ssh/github-key.pub

2 Day-to-day usage

2.1 Add SSH key to your SSH agent

On you local laptop or desktop computer, do

ssh-add ~/.ssh/github-key

1 Instead of using a dedicated key for Github, you could reuse another SSH key, like the one you are using
for logging into servers. However, logging in to your servers has nothing to do with using Github, so it is
better practice to keep those two operations completely separate.

2You can later add a passphrase to the key, or change an existing passphrase using ‘ssh-keygen -f
~/.ssh/github-key -p’.

https://help.github.com/articles/generating-an-ssh-key/
https://github.com/settings/profile

If you work on a remote server, add the key locally before you connect to the remote server,
then do3

ssh -A beskow

[replace beskow by the name of the server] to connect.

You can use the command ‘ssh-add -l’ to see which keys you currently have added to the
SSH agent [this also works on the remote server].

2.2 Check out the Pencil Code

git clone git@github.com:pencil-code/pencil-code.git

This will create a directory pencil-code, and the following commands assume that you are
working in that directory:

cd pencil-code/

2.3 Configure Git

Tell Git your user name and email:

git config user.name ’MY NAME’
git config user.email ’MY@EMAIL ’

Recommended:

git config rebase.autoStash true

This will automatically stash away and later restore uncommitted changes when they could
interfere with some Git operations.

2.4 Edit–commit cycle

1. Edit file(s)

2. Commit changes:

Commit all changes to specific files:
git commit <files>
Alternatively , commit all changes to files known to Git:
git commit -a

An editor will pop up for you to enter the log message. You can use ‘git commit
[...] -m "MY LOG MESSAGE ..."’ to set the log message directly from the command
line.

[To split existing changes into logical groups, you can use

3 If you are tired of explicitly typing the ‘-A’ option, you can add an equivalent configuration option to your
~/.ssh/config file.

2

git commit -p

to be asked for each block of changes (‘hunk’) whether you want to commit it or not.]

3. To add any new files, use

git add <file(s)>

4. To see the current status:

git status

For more details, like history, etc., use

gitk --all # graphical front-end; highly recommended
tig --all # curses-based [may require ’apt install tig’]
git log --all # plain ASCII

The small colored circles in gitk have the following meaning:

Red Unregistered changes to files known to Git.

Green Changes added to the index4, but not yet committed.

Yellow The current HEAD commit.

Blue All other commits.

5. Go back to step 1.

2.5 Push commits to the server

To bring your commits to the server, use5

git pull --rebase
[Make sure whatever you just pulled didn’t break anything ...]
git push

Running ‘git pull --rebase’ prior to any push operation saves you some headache in case
there are incoming changes from the server.

4The index doesn’t exist in Subversion. If it gets in your way, use ‘git reset’ to turn changes from the index
into unregistered changes.

5The full form of these commands is
git pull --rebase origin master
[Make sure whatever you just pulled didn’t break anything ...]
git push origin master

But you can (and should) configure Git such that you don’t need to specify the remote (= origin), or the branch
(= master).

3

2.6 Translation table Subversion↔ Git

Operation Subversion Git

Check out svn copy git clone

Status svn status git status

Diff svn diff git diff

Add file svn add git add

Commit and push svn commit git commit
git push

Commit and push safely svn update git commit
svn commit git pull --rebase

git push

3 Troubleshooting

3.1 Conflicts

Conflicts in files are marked up as in CVS or Subversion.

After you have resolved them in the file(s), run

git add <file(s)>

to tell Git that they are fixed.

3.2 Have I lost data?

Most likely not. See Section 3 (“Don’t panic”) of Git Best Practices under
$PENCIL_HOME/doc/git/.

3.3 I want to discard all of my local changes

[The following is one of the few commands that do lose data, but you ware asking for exactly
this]:

git reset --hard ’@{upstream}’
git checkout .

4

	Preparation
	SSH key

	Day-to-day usage
	Add SSH key to your SSH agent
	Check out the Pencil Code
	Configure Git
	Edit–commit cycle
	Push commits to the server
	Translation table Subversion Git

	Troubleshooting
	Conflicts
	Have I lost data?
	I want to discard all of my local changes

