Turbulent magnetic fields: cascades & dissipation

* Turbulence spectrum
important diagnostics

o Spectral slope (inertial
range)

o Dimensional arguments
o Subinertial range

o Random (0-correlated): k?,
because integrated over
shells in k-space

* Length of inertial range
o =2 Reynolds number
o Very large in astrophysics
o Not in simulations
o Some effects sensitive to this

e Bottleneck effect
o lIs areal effect

o Less pronouncedin 1-D
spectra

o Important for some small-
scale dynamos
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The conclusion from the above expressions is thus that
the MHD equations in an expanding universe with zero cur-
vature are the same as the relativistic MHD equations in a
nonexpanding universe, provided the dynamical quantities
are replaced by the scaled ‘‘tilde’’ variables, and provided
conformal time t is used. The effect of this is, as usual, that

Brandenburg, Enqvist, Olesen
Phys Rev D 54, 1291 (1996)

Initial slope

E~k*

Causality (Durrer & Caprini 2003)

shell-integrated spectra
O-correlated vector potential
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Self-similar turbulent decay

- dm (1-"6\1)
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Collapsed spectra and pg d|agrams

Brandenburg & Kahniashvili (2017)
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Appendix A: Historical note on anastrophy

A n a S t r O h I n 2 -— D In recent years, the term anastrophy for the mean squared
magnetic vector potential (A%) = const has become in-

creasingly popular (Tronko et al. 2013; Galtier & Meyrand

. 2 2015; Zhou et al. 2021; Hosking & Schekochihin 2021;

conservation of anastrophy, (A2) = const Schekochihin 2022). Tn the 19705, it was referred to as mean

: square vector potential (Fyfe & Montgomery 1976) or as

the variance of the magnetic potential (Pouquet 1978). The
term anastrophy was first used in the 1987 Les Houches

Vector potential (0, 0, A,) obeys DA,

—— nV2A > lecture notes by Pouquet (1993), and it was also used by
Dt Vakoulenko (1993), but without explanation of its origin.
S||ght|y different decay laws Annick Pouquet (private communication) informed us
now that the word was invented by Uriel Frisch and Nicolas
fM(t) ~0.13 <A§>1/4 t1/2, gM(t) ~ 15 <A2>1/2 ¢—1 Papanicolaou during a meeting on a Winter Sunday in

the 1970s at Saint-Jean-Cap-Ferrat, while she and Jacques
Léorat were also present.

The word has Greek roots and refers to the rate or speed
of something, but is not to be confused with the enstrophy,

EI\/I (k t) S 60 <A§> k i.e., the mean squared vorticity.
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Scaling of the Hosking integral in decaying
magnetically dominated turbulence

Hongzhe Zhou “'!»4, Ramkishor Sharma'? and Axel Brandenburg “''+%%5

'Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns viig 12,
SE-10691 Stockholm, Sweden
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“Saffman helicity invariant” may be misleading, because the term helicity invariant is reserved 10-2 . 3
for integrals which are chiral in character. Moreover, Saffman never considered helicity in his h;)"_" -2 | M)
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Hosking integral
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Resistively prolonged decay during radiative era
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Resistively controlled primordial magnetic turbulence decay

A. Brandenburg’?34° A, Neronov®7, and F. Vazza®?10
Relation between decay time
77! = —dIn&y/dt

and Alfven time
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Chiral magnetic effect: introduces pseudoscalar

 Mathematically identical to o effect ¢ In the presence of a magnetic
in mean-field dynamos field, particles of opposite

* Comes from chiral chemical charge have momenta

potential pu (or i) * 2 electriccurrent
_ . , & | & |,
* Number differences of left- & right- ¢ Self-excited dynamo st =ik Ty
. ) CT’L ) CME
handed fermions - But depletes p Bl P s
15 = 24 aem (ng, — nR) (he/kgT)?,
€ g—?zn(uB—VxB)-l—UxB

Right-handed: Left-handed:

[ — [ — o = | k| - npk® B=curlA




Time dependence from chiral magnetic effect (CME)

* Exponential growth
at one k

e Subsequent inverse
cascade

* Always fully helical
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Many details are known by now

Saturation,
large—scale :
magnetic fields :

scaoles

instability
scale:

"b""ﬂ*"?(ﬁ}‘)l/zg

* Instability just n dependant
 Saturation governed by A

* Regime | is when turbulent
subrange is long

* In regime ll, just inverse

cascading
%—?:Vx ux B+n(usB—J)|, J=V xB,
Dys

=—)\ 77(/1.5B — J) - B+ D5V2#5 — LIt s,

Dt

U\ = /1,5()//\1/2’ ’U# = HU507). (())

We recall that we have used here dimensionless quanti-
ties. We can identify two regimes of interest:

<0, <o (regime T g
nk1 <wvx <w, (regime II), (8)



Strength of chiral magnetic effect

o [N e
N
* Inverse turbulent cascade : X
o<B*>~ t?/3 length scale: §,, ~ t*?/3 g %m:m% \ s, 1) |
* Dimensional arguments give o §'°"’<,;~e’\ R e
(B?) &y = € (kgTp) (/i) 2, 1 e

log( §,/Mpc )

* Inserting T=3K gives 1073 G on 1 Mpc

* But starting length scale very small 2> 12 cm

’ Consequence of conservation law * Compared with horizon scale at that time

(ny — nR) +

4dctem

(A - B)

(electroweak) of ~1 AU

e Other dimensional argument:

(B*)éw < €3(a,/ag)’ G2 h 122,



Decay law of magnetic turbulence with helicity balanced by chiral fermions

Axel Brandenburg ©,>3% Kohei Kamada ®,> and Jennifer Schober
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Fully helical, but balanced chirality

Hosking scaling applies

Same scaling as for nonhelical turbulence

But magnetic helicity not conserved: power law!
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Algebraic decay of helicity
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. * Helicity decays not exponentially,
[Hml ocps)| o2  But algebraically: 10/9 —4/9 = 6/9

r=p—gq=2/3 * Important for baryogenesis



