
Turbulent magnetic fields: cascades & dissipationTurbulent magnetic fields: cascades & dissipation
• Turbulence spectrum 

important diagnostics
o Spectral slope (inertial 

range)
o Dimensional arguments
o Subinertial range
o Random (d-correlated): k2, 

because integrated over 
shells in k-space

• Length of inertial range
o → Reynolds number
o Very large in astrophysics
o Not in simulations
o Some effects sensitive to this

• Bottleneck effect
o Is a real effect
o Less pronounced in 1-D 

spectra
o Important for some small-

scale dynamos
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Title



6

3-D decay simulations

Initial slope
E~k4

Causality (Durrer & Caprini 2003)
shell-integrated spectra
d-correlated vector potential

helical vs
nonhelical

Christensson et al.
(2001, PRE 64, 056405)

Brandenburg, Enqvist, Olesen
Phys Rev D 54, 1291 (1996)
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Self-similar turbulent decay

instantaneous scaling exponents-
growth at small k

3/2
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Evolutionary 
diagram

xM correlation length

lower limit on
product B2 xM

Magnetic energy dependence
Parametric representation 
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Sect. 2.2
Assessement of the turbulent 
convective dynamo view

Collapsed spectra and pq diagrams
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Hydro: helicity 
unimportant

MHD: no helicity

MHD:
w/ helicity

Slope b
Explanations
for slope b
Exponents p,q
(Hosking & 
Schekochihin
2021+2023)

Y



Anastrophy in 2-D

Slightly different decay laws

Envelope: linear increase

Vector potential (0, 0, Az) obeys



8

Self-similar turbulent decay
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Hosking integral

[IH] = cm9 s–4

xM = IH
a t–b

a=1/9, b=4/9

for k3 initially 

AB, Sharm
a, Vachaspati(2023)



Resistively prolonged decay during radiative era

• Endpoints under assumption that 
decay time = Alfven time

• Use: decay time = recombination time

• Possibility: decay time >> Alfven time

• → Premature endpoint of evolution



Hall cascades
Relation between decay time

Independent 
verification of 
Hosking 
phenomenolo
gy

and Alfven time

Determine CM in relation:

3-D

2-D



Chiral magnetic effect: introduces pseudoscalar

• Mathematically identical to a effect 
in mean-field dynamos

• Comes from chiral chemical 
potential m (or m5)

• Number differences of left- & right-
handed fermions

• In the presence of a magnetic 
field, particles of opposite 
charge have momenta

• → electric current
• Self-excited dynamo
• But depletes m

B=curlA2kk m −=

Discovered originally by Vilenkin (1980); application to 
magnetogenesis in early Universe by Joyce & Shaposhnikov (1997)



Time dependence from chiral magnetic effect (CME)

• Exponential growth 
at one k

• Subsequent inverse 
cascade

• Always fully helical

Growth at one wavenumber
Then: saturation caused by 
initial chemical potential

Brandenburg et al. (2017, ApJL 845, L21)



Many details are known by now

• Instability just  dependant
• Saturation governed by l

• Regime I is when turbulent 
subrange is long

• In regime II, just inverse 
cascading



Strength of chiral magnetic effect

• Inverse turbulent cascade
o <B2> ~ t-2/3 length scale: xM ~ t+2/3

• Dimensional arguments give

• Inserting T=3K gives 10–18 G on 1 Mpc
• Consequence of conservation law

• But starting length scale very small → 12 cm
• Compared with horizon scale at that time 

(electroweak) of ~1 AU 

• Other dimensional argument:



Strength of chiral magnetic effect

• Fully helical, but balanced chirality
• Hosking scaling applies
• Same scaling as for nonhelical turbulence
• But magnetic helicity not conserved: power law!



• Helicity decays not exponentially,
• But algebraically: 10/9 – 4/9 = 6/9
• Important for baryogenesis

Algebraic decay of helicity

K


