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Handout 3: decaying MHD turbulence

An important problem in primordial magnetogenesis are the small length scales. This is where the
possibility of an inverse cascade plays a role. To get into that, we first need to define spectra. This will
be done next.

1 Energy spectra

We define magnetic energy and magnetic helicity spectra, Ey(k, t) and Hy(k,t), as shell-integrals.

En(k) = 3 B (1)
k_<l|k|<k4

Hu(k) = LY (A-B"+ A4 B), ®
k_<|k|<ky

where kL = k £ k/2 and 6k = 27/L is the wavenumber increment and also the smallest wavenumber in
the plane L? with L being the size of the magnetograms.

Note that the magnetic helicity spectrum is not the spectrum of A - B, although that one also plays
a certain role. That one would be called the magnetic helicity variance spectrum. It will be needed in
connection with the Hosking integral, an important quantity discussed below.

Sometimes, we call magnetic energy spectra M (k) and magnetic helicity spectra H (k). We also have
kineticenergy and helicity spectra.

2 Realizability condition

It is convenient to decompose the Fourier transformed magnetic vector potential, Ag, into a longitudinal
component, hll, and eigenfunctions h* of the curl operator. Especially in the context of spherical domains
these eigenfunctions are also called Chandrasekhar-Kendall functions, while in Cartesian domains they
are usually referred to as Beltrami waves. This decomposition has been used in studies of turbulence and
in magnetohydrodynamics and in dynamo theory. Using this decomposition we can write the Fourier
transformed magnetic vector potential as

A = afh + aghy; + agh, (3)
with
ik x hif = +khif, k=K, (4)
and N
(" hf) = (R ) = (g, ) =1, (5)

where asterisks denote the complex conjugate, and angular brackets denote, as usual, volume averages.
The longitudinal part a‘,lch‘,lc is parallel to k and vanishes after taking the curl to calculate the magnetic
field. In the Coulomb gauge, V - A = 0, the longitudinal component vanishes altogether.

The (complex) coefficients ai (t) depend on k and t, while the eigenfunctions hi, which form an
orthonormal set, depend only on k and are given by

1 kx(kxe)Fik(k xe)

V2 k21— (k-e?/k?

hi; =

(6)
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Figure 1: Power spectra of magnetic energy of positively and negatively polarized parts (M,j' and M, )
in the linear and nonlinear regimes. The spectra in the linear regime have been compensated by the
exponential growth factor to make them collapse on top of each other. Here the forcing wavenumber is
in the dissipative subrange, k¢ = 27, but this allows enough scale separation to see the inverse transfer of
magnetic energy to smaller k.

where e is an arbitrary unit vector that is not parallel to k. With these preparations we can write the
magnetic helicity and energy spectra in the form

Hy, = k(|ay; [ = lay 1)V, (7)
My = 5k (Jaj, |* + lay [*)V, (8)

where V' is the volume of integration. (Here again the factor pg !is ignored in the definition of the
magnetic energy.) From Equations (7)) and (8) one sees that

$k|Hg| < My, 9)

which is also known as the realizability condition. A fully helical field has therefore M} = j:%kH k-
For further reference we now define power spectra of those components of the field that are either
right or left handed, i.e.
HE = 2HaEPV, ME = ItV (10)

Thus, we have Hy = Hlj +H, and M;, = Mlj + M, . Note that H,f and M;t can be calculated without
explicit decomposition into right and left handed field components using

Hif = L(Hy £267'My), MFE = L(M, £ LkHy). (11)

This method is significantly simpler than invoking explicitly the decomposition in terms of afhf.
In Figure 7?7, we show plots of M ki in connection with turbulence simulations. Here the turbulence
is driven with a helical forcing function proportional to h;c"; see Equation (@]).



The integral realizability condition can be obtained by integrating, but first we write
—2k~Y M, < Hy, < 2k~ M, (12)

and then we define the integral scale

& = /k‘le dk//Mk dk. (13)

3 Frisch argument

The occurrence of an inverse cascade can be understood as the result of two waves (wavenumbers p

and q) interacting with each other to produce a wave of wavenumber k. The following argument is due

to [Frisch et al! (1975). Assuming that during this process magnetic energy is conserved together with
magnetic helicity, we have

M, + My, = My, (14)

‘le + |Hq| = |Hyl, (15)

where we are assuming that only helicity of one sign is involved. Suppose the initial field is fully helical
and has the same sign of magnetic helicity at all scales, we have

2M, =p|H,| and 2M, = q|H,, (16)

and so Equation (I4)) yields
plHp| + q|Hg| = 2M), > k|Hy|, (17)

where the last inequality is just the realizability condition (@) applied to the target wavenumber k after
the interaction. Using Equation (IH) in Equation (I'7]) we have

PlHp| +qlHy| = k(|Hp| + [Hg]). (18)
In other words, the target wavevector k after the interaction of wavenumbers p and q satisfies
H, H
|Hp| + |H,|
The expression on the right hand side of Equation (I3)) is a weighted mean of p and ¢ and thus satisfies
. plH,| + q|Hy|
min(p, q) < == < max(p,q), (20)
|Hp| + |H,|
and therefore
k < max(p, ). (21)

In the special case where p = ¢, we have £ < p = ¢, so the target wavenumber after interaction is
always less or equal to the initial wavenumbers. In other words, wave interactions tend to transfer
magnetic energy to smaller wavenumbers, i.e. to larger scale. This corresponds to an inverse cascade.
The realizability condition, %k|H;€\ < My, was the most important ingredient in this argument. An
important assumption that we made in the beginning was that the initial field be fully helical.

4 Initial spectrum

A random field with white noise is delta-correlated in real space and a constant in k-space. Remember
that the magnetic energy spectrum is shell-integrated. Therefore, in 3-D, the volume of the shell is
47k?5k, so the spectrum increases like k2. (In 2-D, spectra of white noise only increase proportional to
k, and they would be flat in 1-D.)

A random magnetic field must also obey V - B = 0. Therefore, A must be random and it would have
a k? spectrum. Since the spectrum is quadratic in the field, the spectrum of B is then proportional to
k*. Such spectra are also called causal spectra (Durrer & Caprini, 2003).



5 Decaying turbulence laws from dimensional arguments

A famous dimensional argument is that to obtain the scaling of the Kolmogorov spectrum. There one says
that the physics of the Kolmogorov cascade is characterized by the energy flux, €, which has dimensions
of cm?s73. The kinetic energy spectrum Fk (k) itself has dimensions cm®s~2. One assumes that it is a
power law of k, and that ex enters also, so then we have

FEx (k) = const x €%k, (22)

so you have two equations for the dimensions cm and s, respectively, for two unknowns, a and b.
By a similar argument, you can also an equation for a length length scale:

En(t) o Iy 4273, (23)
where defined Iy = (A - B), and similarly for Ey(k), i.e.,
En(t) oc I3 4723, (24)
Finally, one can also find an expression for the envelope of the spectrum:
Ey(k,t) < const X Ty (25)

For nonhelical turbulence, however, we believe that the relevant conserved quantity is the Hosking integral,
which will be introduced next.

6 Anastrophy in 2-D

In strict 2-D, as opposed to what is sometimes called 2.5-D (which is also just 2-D, but now the magnetic
field also has a component out of the place), the anastrophy is (A2) is conserved. Here, A, (z,y,t) is the
z component of the magnetic vector potential (and the other two vanish). The 2-D case can more easily
be run and is therefore suitable for exercises:

e What scaling do you expect in strict 2-D where the decay is controlled by the conservation of {A42)?

e Run the codes for different box sizes L. (In the code, we give ky = 27w /L, which is called wavl and
is unity by default.)

e Vary the amplitude. Check that all the runs fall on a line close to va = {uv/t at the time ¢.

7 Hosking integral

The Hosking integral Iy is defined as the asymptotic limit of the magnetic helicity density correlation
integral,

Tu(R) = /V (h(@)h(z + ) &, (26)

for scales R large compared with the correlation length &\ of the turbulence, but small compared with
the system size L. Here, Vi = 47 R3/3 is the volume of a sphere of radius R. For small values of R, the
function Zg(R) increases proportional to R3, but for large R, it levels off when there is no net magnetic
helicity. However, as explained in 7, this is different for finite magnetic helicity, as is discussed below. In
practice, the value of R is chosen empirically and must always be small compared with the size of the
domain.



? devised and compared different methods for computing Zy(R). These methods are all based on the
Fourier transform of h. Particularly simple is what they called the box-counting method for a spherical
volume with radius R. This allowed them to rewrite Equation (26]) as a weighted integral over Sp(h),

Tu(R) = / " w(k, R) Sp(h) dk, (27)

where

w(k,R) =

AT R3 [Gjl(kR)r, (28)

3 kR

and ji(z) = (sinx — x cosx)/x? is a spherical Bessel function.

8 Enpoints

Magnetically dominated turbulence is characterized by the turbulent magnetic energy density &y and
the magnetic integral scale &y. Both &y (t) and &uv(t) can be defined in terms of the magnetic energy
spectrum Ey;(k,t), such that &y = [ Eydk and & = [k~ Eydk/Ev. In decaying turbulence, both
quantities depend algebraically rather than exponentially on time. Therefore, the decay is primarily
characterized by power laws,

Emoct™ and &y oox td, (29)

rather than by exponential laws of the type &y o< e */7. The algebraic decay is mainly a consequence

of nonlinearity. On the other hand, in decaying hydromagnetic turbulence with significant cross-helicity,
for example, the nonlinearity in the induction equation is reduced and then the decay is indeed no longer
algebraic, but closer to exponential.

An obvious difference between algebraic and exponential decays is that in the former &y (t) is char-
acterized by the nondimensional quantity p, while in the latter it is characterized by the dimensionful
quantity 7. Following Hosking & Schekochihin (2023), a decay time 7 can also be defined for an algebraic
decay and is then given by

771 = —dIn&y/dt. (30)

In the present case of a power-law decay, this value of 7 = 7(¢) is time-dependent and can be related to

the instantaneous decay exponent
p(t) = —=dIné&y/dInt (31)

through 7 = ¢/p(t) (i.e., no new parameter emerges except for ¢ itself). However, a useful way of
incorporating new information is by relating 7 to the Alfvén time 74 = {/va through

7 = Cnmém/va, (32)

where C) is a nondimensional parameter, and vy is the Alfvén velocity, which is related to the magnetic
energy density through &y = BZ../2u0 = pv3/2, where p is the density, uo the vacuum permeability,
and B,ns the root mean square (rms) magnetic field.

As was noted by [Hosking & Schekochihin (2023), Equation (B82]) can be used to define the endpoints of
the evolutionary tracks in a diagram of By, versus &y or, equivalently, va versus &y (i.e., va = va(£)).
They also noted that the location of these endpoints is sensitive to whether or not Cy; depends on the
resistivity of the plasma. If it does depend on the resistivity, this could be ascribed to the effects of
magnetic reconnection, which might slow down the turbulent decay.

Magnetic reconnection refers to a change in magnetic field line connectivity that is subject to topo-
logical constraints. A standard example is x-point reconnection, which becomes slower as the x-point
gets degenerated into an extremely elongated structure (Parker, [1957). It is usually believed that in
the presence of turbulence, such structures break up into progressively smaller ones, which makes recon-
nection eventually fast (i.e., independent of the microphysical resistivity). However, whether this would
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Figure 2: Dependence of Cy; on Lu for the 2D runs. Shallow scaling o< Lu®! is found for 10* < Lu < 10°.
The black (red) data points are for Prpy = 5 (Pras = 1). The blue data points denote 3D results. The
orange symbols are for the runs with Pry; = 10 and 20. The dashed and dotted lines give show Lu'/?
and Lu'/4 scalings for small values of Lu. Adapted from [Brandenburg et al! (2024), but now together
with the new data for small values of Lu, which indicated a clear 1/3 scaling (solid line).

also imply that 7 becomes independent of the resistivity remains an unclear issue. Another question
concerns the speed at which magnetic flux can be processed through a current sheet. Also of interest is
the timescale on which the topology of the magnetic field changes. These different timescales may not
all address the value of Cy that relates the decay time to the Alfvén time.

In magnetically dominated turbulence, the effect of the resistivity is quantified by the Lundquist
number. For decaying turbulence, it is time-dependent and defined as

Lu(t) = va(t) &m(t)/n. (33)

This quantity is similar to the magnetic Reynolds number if we replace va by the rms velocity, tpms.
Here, however, the plasma is driven by the Lorentz force, so the Lundquist number is a more direct way
of quantifying the resistivity than the magnetic Reynolds number. The Alfvénic Mach number is defined
as Map = Upms/vaA.

Although 2D and 3D runs are in many ways rather different from each other, we now determine the
same diagnostics as in the 3D case (see Figure [ for a plot of Cy; versus Lu). We see that the Cy
dependence on Lu is qualitatively similar for 2D and 3D turbulence.

We note that our definition of &\ does not include a 27 factor. A comparison with the Sweet—Parker
value of n = 1/2 results in reasonable agreement for small values of Lu, but there are rather noticeable
departures from the data for intermediate values.
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Figure 3: Visualization of J,(z,y) of Run 2m6 with Pry; = 10, Lu = 1.8 x 10°, Lu, ~ 5 x 10%, and
163842 mesh points at t = 464 for a small part of the domain with sizes 2.8&\(¢) x 0.74&\(¢). The lengths
of 1000., 2L., and & are indicated by horizontal white solid, dashed, and dotted lines, respectively.
The thickness of the current sheet corresponds to about 3Ax =~ 214.. In its proximity, there are also
indications of ringing, indicated by the black circle.

FigureBla visualization of J, (z,y) for Run 2m6 with Pry; = 10 and 163842 mesh points at ¢ = 464 for a
small part of the domain with sizes 2.8&y(t) x 0.74&\ (t) where a large current sheet breaks up into smaller
plasmoids. A comparison between Runs 2m5 and 2m6 with 81922 and 163842 in

(2024).
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