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Handout 3: decaying MHD turbulence

An important problem in primordial magnetogenesis are the small length scales. This is where the
possibility of an inverse cascade plays a role. To get into that, we first need to define spectra. This will
be done next.

1 Energy spectra

We define magnetic energy and magnetic helicity spectra, EM(k, t) and HM(k, t), as shell-integrals.

EM(k) = 1

2

∑

k
−
<|k|≤k+

|B̃(k)|2, (1)

HM(k) = 1

2

∑

k
−
<|k|≤k+

(Ã · B̃∗ + Ã
∗ · B̃), (2)

where k± = k± δk/2 and δk = 2π/L is the wavenumber increment and also the smallest wavenumber in
the plane L2 with L being the size of the magnetograms.

Note that the magnetic helicity spectrum is not the spectrum of A ·B, although that one also plays
a certain role. That one would be called the magnetic helicity variance spectrum. It will be needed in
connection with the Hosking integral, an important quantity discussed below.

Sometimes, we call magnetic energy spectra M(k) and magnetic helicity spectra H(k). We also have
kineticenergy and helicity spectra.

2 Realizability condition

It is convenient to decompose the Fourier transformed magnetic vector potential, Ak, into a longitudinal
component, h‖, and eigenfunctions h± of the curl operator. Especially in the context of spherical domains
these eigenfunctions are also called Chandrasekhar–Kendall functions, while in Cartesian domains they
are usually referred to as Beltrami waves. This decomposition has been used in studies of turbulence and
in magnetohydrodynamics and in dynamo theory. Using this decomposition we can write the Fourier
transformed magnetic vector potential as

Ak = a+
k
h+

k
+ a−

k
h−
k
+ a

‖
k
h
‖
k
, (3)

with
ik × h±

k
= ±kh±

k
, k = |k|, (4)

and
〈h+

k

∗ · h+

k
〉 = 〈h−

k

∗ · h−
k
〉 = 〈h‖

k

∗
· h‖

k
〉 = 1, (5)

where asterisks denote the complex conjugate, and angular brackets denote, as usual, volume averages.

The longitudinal part a
‖
k
h
‖
k
is parallel to k and vanishes after taking the curl to calculate the magnetic

field. In the Coulomb gauge, ∇ ·A = 0, the longitudinal component vanishes altogether.
The (complex) coefficients a±

k
(t) depend on k and t, while the eigenfunctions h±

k
, which form an

orthonormal set, depend only on k and are given by

h±
k
=

1√
2

k × (k × e)∓ ik(k × e)

k2
√

1− (k · e)2/k2
, (6)

1



Figure 1: Power spectra of magnetic energy of positively and negatively polarized parts (M+

k and M−
k )

in the linear and nonlinear regimes. The spectra in the linear regime have been compensated by the
exponential growth factor to make them collapse on top of each other. Here the forcing wavenumber is
in the dissipative subrange, kf = 27, but this allows enough scale separation to see the inverse transfer of
magnetic energy to smaller k.

where e is an arbitrary unit vector that is not parallel to k. With these preparations we can write the
magnetic helicity and energy spectra in the form

Hk = k(|a+k |2 − |a−k |2)V, (7)

Mk = 1

2
k2(|a+k |2 + |a−k |2)V, (8)

where V is the volume of integration. (Here again the factor µ−1
0 is ignored in the definition of the

magnetic energy.) From Equations (7) and (8) one sees that

1

2
k|Hk| ≤ Mk, (9)

which is also known as the realizability condition. A fully helical field has therefore Mk = ± 1

2
kHk.

For further reference we now define power spectra of those components of the field that are either
right or left handed, i.e.

H±
k = ±k|a±k |2V, M±

k = 1

2
k2|a±k |2V. (10)

Thus, we have Hk = H+

k +H−
k and Mk = M+

k +M−
k . Note that H±

k and M±
k can be calculated without

explicit decomposition into right and left handed field components using

H±
k = 1

2
(Hk ± 2k−1Mk), M±

k = 1

2
(Mk ± 1

2
kHk). (11)

This method is significantly simpler than invoking explicitly the decomposition in terms of a±
k
h±
k
.

In Figure ??, we show plots of M±
k in connection with turbulence simulations. Here the turbulence

is driven with a helical forcing function proportional to h+

k
; see Equation (6).
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The integral realizability condition can be obtained by integrating, but first we write

−2k−1Mk < Hk < 2k−1Mk, (12)

and then we define the integral scale

ξM =

∫

k−1Mk dk

/
∫

Mk dk. (13)

3 Frisch argument

The occurrence of an inverse cascade can be understood as the result of two waves (wavenumbers p

and q) interacting with each other to produce a wave of wavenumber k. The following argument is due
to Frisch et al. (1975). Assuming that during this process magnetic energy is conserved together with
magnetic helicity, we have

Mp +Mq = Mk, (14)

|Hp|+ |Hq| = |Hk|, (15)

where we are assuming that only helicity of one sign is involved. Suppose the initial field is fully helical
and has the same sign of magnetic helicity at all scales, we have

2Mp = p|Hp| and 2Mq = q|Hq|, (16)

and so Equation (14) yields
p|Hp|+ q|Hq| = 2Mk ≥ k|Hk|, (17)

where the last inequality is just the realizability condition (9) applied to the target wavenumber k after
the interaction. Using Equation (15) in Equation (17) we have

p|Hp|+ q|Hq| ≥ k(|Hp|+ |Hq|). (18)

In other words, the target wavevector k after the interaction of wavenumbers p and q satisfies

k ≤ p|Hp|+ q|Hq|
|Hp|+ |Hq|

. (19)

The expression on the right hand side of Equation (19) is a weighted mean of p and q and thus satisfies

min(p, q) ≤ p|Hp|+ q|Hq|
|Hp|+ |Hq|

≤ max(p, q), (20)

and therefore
k ≤ max(p, q). (21)

In the special case where p = q, we have k ≤ p = q, so the target wavenumber after interaction is
always less or equal to the initial wavenumbers. In other words, wave interactions tend to transfer
magnetic energy to smaller wavenumbers, i.e. to larger scale. This corresponds to an inverse cascade.
The realizability condition, 1

2
k|Hk| ≤ Mk, was the most important ingredient in this argument. An

important assumption that we made in the beginning was that the initial field be fully helical.

4 Initial spectrum

A random field with white noise is delta-correlated in real space and a constant in k-space. Remember
that the magnetic energy spectrum is shell-integrated. Therefore, in 3-D, the volume of the shell is
4πk2δk, so the spectrum increases like k2. (In 2-D, spectra of white noise only increase proportional to
k, and they would be flat in 1-D.)

A random magnetic field must also obey ∇ ·B = 0. Therefore, A must be random and it would have
a k2 spectrum. Since the spectrum is quadratic in the field, the spectrum of B is then proportional to
k4. Such spectra are also called causal spectra (Durrer & Caprini, 2003).
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5 Decaying turbulence laws from dimensional arguments

A famous dimensional argument is that to obtain the scaling of the Kolmogorov spectrum. There one says
that the physics of the Kolmogorov cascade is characterized by the energy flux, ǫK , which has dimensions
of cm2 s−3. The kinetic energy spectrum EK(k) itself has dimensions cm3 s−2. One assumes that it is a
power law of k, and that ǫK enters also, so then we have

EK(k) = const× ǫa
K
kb, (22)

so you have two equations for the dimensions cm and s, respectively, for two unknowns, a and b.
By a similar argument, you can also an equation for a length length scale:

ξM(t) ∝ I
1/3
M

t2/3, (23)

where defined IM = 〈A ·B〉, and similarly for EM(k), i.e.,

EM(t) ∝ I
2/3
M

t−2/3. (24)

Finally, one can also find an expression for the envelope of the spectrum:

EM(k, t) <∼ const× IM. (25)

For nonhelical turbulence, however, we believe that the relevant conserved quantity is the Hosking integral,
which will be introduced next.

6 Anastrophy in 2-D

In strict 2-D, as opposed to what is sometimes called 2.5-D (which is also just 2-D, but now the magnetic
field also has a component out of the place), the anastrophy is 〈A2

z〉 is conserved. Here, Az(x, y, t) is the
z component of the magnetic vector potential (and the other two vanish). The 2-D case can more easily
be run and is therefore suitable for exercises:

• What scaling do you expect in strict 2-D where the decay is controlled by the conservation of 〈A2
z〉?

• Run the codes for different box sizes L. (In the code, we give k1 = 2π/L, which is called wav1 and
is unity by default.)

• Vary the amplitude. Check that all the runs fall on a line close to vA = ξM/t at the time t.

7 Hosking integral

The Hosking integral IH is defined as the asymptotic limit of the magnetic helicity density correlation
integral,

IH(R) =

∫

VR

〈h(x)h(x+ r)〉 d3r, (26)

for scales R large compared with the correlation length ξM of the turbulence, but small compared with
the system size L. Here, VR = 4πR3/3 is the volume of a sphere of radius R. For small values of R, the
function IH(R) increases proportional to R3, but for large R, it levels off when there is no net magnetic
helicity. However, as explained in ?, this is different for finite magnetic helicity, as is discussed below. In
practice, the value of R is chosen empirically and must always be small compared with the size of the
domain.
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? devised and compared different methods for computing IH(R). These methods are all based on the
Fourier transform of h. Particularly simple is what they called the box-counting method for a spherical
volume with radius R. This allowed them to rewrite Equation (26) as a weighted integral over Sp(h),

IH(R) =

∫ ∞

0

w(k,R) Sp(h) dk, (27)

where

w(k,R) =
4πR3

3

[

6j1(kR)

kR

]2

, (28)

and j1(x) = (sinx− x cosx)/x2 is a spherical Bessel function.

8 Enpoints

Magnetically dominated turbulence is characterized by the turbulent magnetic energy density EM and
the magnetic integral scale ξM. Both EM(t) and ξM(t) can be defined in terms of the magnetic energy
spectrum EM(k, t), such that EM =

∫

EM dk and ξM =
∫

k−1EM dk/EM. In decaying turbulence, both
quantities depend algebraically rather than exponentially on time. Therefore, the decay is primarily
characterized by power laws,

EM ∝ t−p and ξM ∝ tq, (29)

rather than by exponential laws of the type EM ∝ e−t/τ . The algebraic decay is mainly a consequence
of nonlinearity. On the other hand, in decaying hydromagnetic turbulence with significant cross-helicity,
for example, the nonlinearity in the induction equation is reduced and then the decay is indeed no longer
algebraic, but closer to exponential.

An obvious difference between algebraic and exponential decays is that in the former EM(t) is char-
acterized by the nondimensional quantity p, while in the latter it is characterized by the dimensionful
quantity τ . Following Hosking & Schekochihin (2023), a decay time τ can also be defined for an algebraic
decay and is then given by

τ−1 = −d ln EM/dt. (30)

In the present case of a power-law decay, this value of τ = τ(t) is time-dependent and can be related to
the instantaneous decay exponent

p(t) = −d ln EM/d ln t (31)

through τ = t/p(t) (i.e., no new parameter emerges except for t itself). However, a useful way of
incorporating new information is by relating τ to the Alfvén time τA = ξM/vA through

τ = CMξM/vA, (32)

where CM is a nondimensional parameter, and vA is the Alfvén velocity, which is related to the magnetic
energy density through EM = B2

rms/2µ0 = ρv2A/2, where ρ is the density, µ0 the vacuum permeability,
and Brms the root mean square (rms) magnetic field.

As was noted by Hosking & Schekochihin (2023), Equation (32) can be used to define the endpoints of
the evolutionary tracks in a diagram of Brms versus ξM or, equivalently, vA versus ξM (i.e., vA = vA(ξ)).
They also noted that the location of these endpoints is sensitive to whether or not CM depends on the
resistivity of the plasma. If it does depend on the resistivity, this could be ascribed to the effects of
magnetic reconnection, which might slow down the turbulent decay.

Magnetic reconnection refers to a change in magnetic field line connectivity that is subject to topo-
logical constraints. A standard example is x-point reconnection, which becomes slower as the x-point
gets degenerated into an extremely elongated structure (Parker, 1957). It is usually believed that in
the presence of turbulence, such structures break up into progressively smaller ones, which makes recon-
nection eventually fast (i.e., independent of the microphysical resistivity). However, whether this would
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Figure 2: Dependence of CM on Lu for the 2D runs. Shallow scaling ∝ Lu0.1 is found for 104 < Lu < 105.
The black (red) data points are for PrM = 5 (PrM = 1). The blue data points denote 3D results. The

orange symbols are for the runs with PrM = 10 and 20. The dashed and dotted lines give show Lu1/2

and Lu1/4 scalings for small values of Lu. Adapted from Brandenburg et al. (2024), but now together
with the new data for small values of Lu, which indicated a clear 1/3 scaling (solid line).

also imply that τ becomes independent of the resistivity remains an unclear issue. Another question
concerns the speed at which magnetic flux can be processed through a current sheet. Also of interest is
the timescale on which the topology of the magnetic field changes. These different timescales may not
all address the value of CM that relates the decay time to the Alfvén time.

In magnetically dominated turbulence, the effect of the resistivity is quantified by the Lundquist
number. For decaying turbulence, it is time-dependent and defined as

Lu(t) = vA(t) ξM(t)/η. (33)

This quantity is similar to the magnetic Reynolds number if we replace vA by the rms velocity, urms.
Here, however, the plasma is driven by the Lorentz force, so the Lundquist number is a more direct way
of quantifying the resistivity than the magnetic Reynolds number. The Alfvénic Mach number is defined
as MaA = urms/vA.

Although 2D and 3D runs are in many ways rather different from each other, we now determine the
same diagnostics as in the 3D case (see Figure 2 for a plot of CM versus Lu). We see that the CM

dependence on Lu is qualitatively similar for 2D and 3D turbulence.
We note that our definition of ξM does not include a 2π factor. A comparison with the Sweet–Parker

value of n = 1/2 results in reasonable agreement for small values of Lu, but there are rather noticeable
departures from the data for intermediate values.

6



Figure 3: Visualization of Jz(x, y) of Run 2m6 with PrM = 10, Lu = 1.8 × 105, Luν ≈ 5 × 104, and
163842 mesh points at t = 464 for a small part of the domain with sizes 2.8ξM(t)×0.74ξM(t). The lengths
of 100 δc, 2Lc, and ξM are indicated by horizontal white solid, dashed, and dotted lines, respectively.
The thickness of the current sheet corresponds to about 3∆x ≈ 21 δc. In its proximity, there are also
indications of ringing, indicated by the black circle.

Figure 3 a visualization of Jz(x, y) for Run 2m6 with PrM = 10 and 163842 mesh points at t = 464 for a
small part of the domain with sizes 2.8ξM(t)×0.74ξM(t) where a large current sheet breaks up into smaller
plasmoids. A comparison between Runs 2m5 and 2m6 with 81922 and 163842 in Brandenburg et al.
(2024).
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