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Handout 4: dynamos

Dynamos convert kinetic energy into magnetic energy. Significant amounts of kinetic energy are being
released with the beginning of cosmological structure formation. The resulting kinetic energy is in the
form of turbulent motions on all scales between those of galaxy clusters, galaxies, stars, and planets.

1 History

Larmor (1919) conceived the idea that kinetic energy can be the reason for the existence of the magnetic
field in sunspots. Cowling (1933) showed mathematically that a simple dipole field cannot be sustained
by any fluid motion. It was not until 1958 that it was clear that dynamos can exist (Herzenberg, 1958;
Backus, 1958). While Parker (1955) did already understand the basics of a solar-type dynamo, this did
not stop Chandrasekhar (1956) from looking for alternatives. Even Parker himself continued to work in
many other fields (solar wind, interplanetary magnetic fields, reconnection, solar flares, cosmic rays) until
he returned to dynamos after Moffatt (1970a,a) called attention to the works of Steenbeck et al. (1966)
and Steenbeck & Krause (1969,?), and Roberts & Stix (1971) translated them from German.

2 Types of dynamos

There are different types of dynamos. A precise distinction can easily be problematic. The following
subsections distinguish contrasting pairs of dynamo types, giving an idea about the wealth of different
possibilities.

2.1 Selfexcited versus non-selfexcited dynamos

In different communities, the term dynamo can mean different things. In astrophysics, we speak about
selfexcited dynamos, where no external magnetic field is required. The same distinction also applies to
technical dynamos, where selfexcited dynamos are those without any permanent magnets.

2.2 Large-scale and small-scale dynamos

Large-scale dynamos generate magnetic fields on scales larger than the typical scale of the underlying
motions. One can then define an average, under which significant magnetic energy still survives. Large-
scale dynamos can therefore also be described as mean-field dynamos, at least in principle.

Astrophysically, small-scale dynamo action is very generic. Its correct theoretical description goes
back to Kazantsev (1968). Whenever the magnetic Reynolds number is large enough [ReM ≡ urms/ηkf >
O(100)], a magnetic field grows to equipartition strength with the kinetic energy. Thus, non-magnetic
turbulence does not exist in much of the contemporary universe.

2.3 Helical and nonhelical dynamos

When the flow has kinetic helicity, i.e., 〈ω ·u〉/neq0, where ω = ∇×u is the vorticity, large-scale dynamos
can be excited. They are driven by what is called an α effect, which means that the mean electromotive
force 〈u× b〉 from the small-scale velocity u = U −U and the small-scale magnetic field b = B −B has
a component parallel to the magnetic field. The coefficient in front of B is called α, which can also be a
tensor or, more generally, a tensorial integral kernel. This contribution is called non-diffusive. There is
always also a diffusive contribution proportional to the mean current density J and the coefficient is the
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turbulent magnetic diffusivity. Thus, in its simples form, we have

〈u× b〉 = αB − ηtµ0J . (1)

However, not all large-scale dynamos are helical. Examples of nonhelical large-scale dynamos are:

• dynamos driven by a negative turbulent magnetic diffusivity (Devlen et al., 2013),

• dynamos driven by a memory effect (Rheinhardt et al., 2014),

• dynamos driven by an incoherent α effect (Vishniac & Brandenburg, 1997),

2.4 Vortical and non-vortical dynamos

Usual turbulence is vortical, i.e., ω 6= 0. Nonvortical turbulence is called acoustic turbulence (Kadomtsev & Petviashili,
1973). Theoretically, dynamo action from acoustic turbulence should be possible (Kazantsev et al., 1985),
but their reality in simulations is still not conclusive; see Achikanath Chirakkara et al. (2021) for possible
evidence.

2.5 Statistically stationary and non-stationary dynamos

Many astrophysically relevant flows are statistically non-stationary. Examples are decaying turbulence
(Lecture 3) and collapsing flows. Detecting dynamos in non-stationary flows is problematic, because
there is no clean exponential growth that is otherwise expected. It may help to transform such collapsing
systems into a non-collapsing one (Brandenburg & Ntormousi, 2025).

Interestingly, for stationary flows, one can show that dynamos do not exist when the magnetic diffu-
sivity η vanishes; see Moffatt & Proctor (1985). In the absence of magnetic diffusivity (not just the limit
η → 0), one can write B in terms of Euler potentials αE and βE as

B = ∇αE ×∇βE. (2)

In that case,
∂B

∂t
= ∇× (U ×B) is equivalent to

DαE

Dt
= 0 and

DβE

Dt
= 0. (3)

However, dynamos with Euler potentials have never been found (Brandenburg, 2010).

2.6 Fast and slow dynamos

Fast dynamos are those that maintain a finite growth rate in the limit of large ReM . For slow dynamos,
the growth rate becomes zero in the limit of large ReM . In astrophysics, ReM is usually huge, so slow
dynamos are of limited interest.

Generally, all dynamos whose flows are integrable are slow. ABC flows, by contrast, are not integrable
and may be fast (Galloway & Frisch, 1986). But turbulence is usually enough to make dynamos fast.

2.7 Further subdivision of large-scale dynamos

2.7.1 Dipolar versus quadrupolar

Because of the hemispheric variation of the α effect (negative in the north and positive in the south),
the eigenmodes of a linear dynamo (U is unaffected by B) cannot be pure multipoles proportional to
Yℓm(θ, φ). All the even ℓ couple and all the odd ℓ couple. A dipole has ℓ = 1, but it couples to ℓ = 3, 5,
etc. Likewise, a quadrupole has ℓ = 2, but it couples to ℓ = 4, 6, etc. But even and odd modes do not
couple. Only in the nonlinear regime, there can be mixed modes (Brandenburg et al., 1989).
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Figure 1: Left: Rädler diagram for an α2Ω dynamo in a sphere showing critical values of Cα versus
Cω for a dynamo in a spherical shell. Note that near Cω = 200 the nonaxisymmetric modes S1 and A1

are more easily excited than the axisymmetric modes S0 and A0. Here, Cω (called CΩ in the rest of
this review) is defined such that it is positive when ∂Ω/∂r is negative, and vice versa. Adapted from
Brandenburg et al. (1989). Right: Rädler diagram for the α2Ω dynamo with z extent (solid line) and
the α2 dynamo with x extent in a domain with Lz/Lx = 1/2 (horizontal dash-dotted line). The onset
location in the pure αΩ approximation (CαCΩ = 2) is shown as dashed lines. The case with the vertical
field boundary condition is shown as the dotted line and is marked BC.

2.7.2 Axisymmetric and nonaxisymmetric dynamos

An axisymmetric magnetic field has m = 0 and a nonaxisymmetric magnetic field has m 6= 0. In the
linear regime, dynamos with different m do not couple. Usually, axisymmetric magnetic fields are easier
to excite than nonaxisymmetric ones. It is therefore not easy to explain nonaxisymmetric magnetic fields
in galaxies such as M81. Most spiral galaxies do have axisymmetric magnetic fields.

2.7.3 α2 and αΩ dynamos

The presence of shear modifies the dynamo. This is called the Ω effect. For axisymmetric magnetic
fields, shear tends to amplifies the field. A dynamo based on the α effect is called an αΩ dynamo. For
nonaxisymmetric magnetic fields, however, shear brings oppositely directed fields close together, so such
fields are not amplified by shear.

When there is no shear, a dynamo based on the α effect is called an α2 dynamo. To distinguish the
case where the toroidal magnetic field is purely due to the Ω effect from those where also the α effect
plays a role, one sometimes talks about α2Ω dynamos, where both the α effect and the Ω effect contribute
to replenishing the toroidal field.

The strengths of α effect and Ω effect are characterized by two dynamo numbers

Cα = α0R/ηt, CΩ = ∆ΩR2/ηt, (4)

where α0 is the maximum value of α, ∆Ω is a measure of the strength of the differential rotation (or
shear), and R is the radius of the star or galaxy. A plot of the critical values of Cα versus Cω is called a
Rädler diagram.

With the numerical sample setup for α2 dynamos, we can address a few questions.

• What are the critical dynamo numbers for dipoles and quadrupoles? Which one is easier to excite?

• What is the difference between dynamos with symmetric and antisymmetric α effect?
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Figure 2: Dynamo solution with an α that is symmetric (left) and antisymmetric (right) between north
and south obtained with versions of https://norlx65.nordita.org/~brandenb/teach/PencilCode/C
OSMOMAG2026/4_dynamos/material/both-hemispheres/.

3 Roberts flow dynamos

Roberts (1972) proposed four flow fields to study dynamo action. It is a kinematic flow, i.e., the Navier-
Stokes equation is not solved. The velocity depends only on x and y, but all three components of the
velocity vector u are non-vanishing. Roberts flow I can be written as u = kfϕẑ + ∇ × (ϕẑ), where
ϕ = (v0/k0) sin k0x sin k0 with v0 and k0 being constants. The wavenumber kf is treated as a free
parameter. More explicitly, we can write for all four flows:

uI(x, y) =





+v0 sin k0x cos k0y
−v0 cos k0x sin k0y
w0 sin k0x sin k0y



 , uII(x, y) =





+v0 sin k0x cos k0y
−v0 cos k0x sin k0y
w0 cos k0x cos k0y



 . (5)

uIII(x, y) =





+v0 sin k0x cos k0y
−v0 cos k0x sin k0y

w0/2(cos 2k0x+ cos 2k0y)



 , uIV(x, y) =





+v0 sin k0x cos k0y
−v0 cos k0x sin k0y

w0 sin k0x



 . (6)

where w0 = (kf/k0) v0 has been used. Figure 3 shows the dependence of the growth rate on ReM .

4 Applications

Stellar and galactic dynamos have large-scale fields and they are probably all of α2Ω type. Elliptical
galaxies may host small-scale dynamos Moss & Shukurov (1994). The magnetic field in galaxy clusters
is probably also due to a small-scale dynamo.

Dynamos could also operate during first-order electroweak or QCD phase transitions, but the problem
is that it is unclear whether sufficient vorticity is being produced. There is so far no simulation that shows
dynamo action from such flows.
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Figure 3: Dependence of the normalized growth rate on the normalized magnetic diffusivity for Roberts
flow I with L‖ = L⊥ (black lines) and L‖ = 2L⊥ (blue lines), as well as flow II for L‖ = 2L⊥ (red lines).

References

Achikanath Chirakkara, R., Federrath, C., Trivedi, P., & Banerjee, R., “Efficient Highly Subsonic Tur-
bulent Dynamo and Growth of Primordial Magnetic Fields,” Phys. Rev. Lett. 126, 091103 (2021).

Backus, G. E., “A class of self-sustaining dissipative spherical dynamos,” Ann. Phys. 4, 372–447 (1958).

Brandenburg, A., “Magnetic field evolution in simulations with Euler potentials,” Month. Not. Roy.

Astron. Soc. 401, 347–354 (2010).

Brandenburg, A., & Ntormousi, E., “Magnetic field amplification during a turbulent collapse,” Astrophys.

J. 990, 223 (2025).

Brandenburg, A., Krause, F., Meinel, R., Moss, D., & Tuominen, I., “The stability of nonlinear dynamos
and the limited role of kinematic growth rates,” Astron. Astrophys. 213, 411–422 (1989).

Chandrasekhar, S., “Effect of Internal Motions on the Decay of a Magnetic Field in a Fluid Conductor,”
Astrophys. J. 124, 244– (1956).

Cowling, T. G., “The magnetic field of sunspots,” Month. Not. Roy. Astron. Soc. 94, 39–48 (1933).

Devlen, E., Brandenburg, A., & Mitra, D., “A mean field dynamo from negative eddy diffusivity,” Month.

Not. Roy. Astron. Soc. 432, 1651–1657 (2013).

Galloway, D., & Frisch, U., “Dynamo action in a family of flows with chaotic streamlines,” Geophys.

Astrophys. Fluid Dynam. 36, 53–84 (1986).

Herzenberg, A., “Geomagnetic dynamos,” Phil. Trans. Roy. Soc. A 250, 543–583 (1958).

Kadomtsev, B. B. & Petviashili, V. I., “Acoustic turbulence,” Sov. Phys. Dokl. 18, 115–116 (1973).

Kazantsev, A. P., “Enhancement of a magnetic field by a conducting fluid,” Sov. Phys. JETP 26, 1031–
1034 (1968).

Kazantsev, A. P., Ruzmaikin, A. A., & Sokoloff, D. D., “Magnetic field transport by an acoustic
turbulence-type flow,” Sov. Phys. JETP 88, 487–494 (1985).

5



Larmor, J., “How could a rotating body such as the Sun become a magnet,” Rep. Brit. Assoc. Adv.

Sci. 87, 159–160 (1919).

Moffatt, H. K., “Turbulent dynamo action at low magnetic Reynolds number,” J. Fluid Mech. 41, 435–
452 (1970).

Moffatt, H. K., “Dynamo action associated with random inertial waves in a rotating conducting fluid,”
J. Fluid Mech. 44, 705–719 (1970b).

Moffatt, H. K., & Proctor, M. R. E., “Topological constraints associated with fast dynamo action,” J.

Fluid Mech. 154, 493–507 (1985).

Moss, D., & Shukurov, A., “Turbulence and magnetic fields in elliptical galaxies,” Month. Not. Roy.

Astron. Soc. 279, 229–239 (1994).

Parker, E. N., “Hydromagnetic dynamo models,” Astrophys. J. 122, 293–314 (1955).
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