COSMOMAG - Evolution before recombination January 16, 2026, Azel Brandenburg

Handout 5: magnetic fields during recombination

We have seen that the structure of the magnetic field is characterized by some simple principles. Its
magnetic energy spectrum Eyi(k) has a k? subinertial range up until some peak wavenumber k. It
is then followed by an inertial range, where either Ey; o< k~°/3 or perhaps slightly steeper oc k2
(Brandenburg et all, [2015).

As time goes on, k, decreases and is given by k, = &y ()™, where &y(t) o 7 follows a power law
where the value of ¢ obtained from dimensional arguments: ¢ = 2/3 when the mean magnetic helicity
density, Iy = (A - B) is conserved, and ¢ = 4/9 when the Hosking integral, Iy is conserved. The
spectrum evolves underneath an envelope Ey(k) o< kP, where 8 = 0 when Iy = const, and 8 = 3/2
when Iy = const. The magnetic mean energy density is Ev(t) = [ Em(k,t) dk and it always decays
like En(t) o< t7P, where p = 2/3 when Iy = const and p = 10/9 when Iy = const. In the diagnostic
diagram, va (t) versus &u(t), we have va o< &%, where where k = 1/2 when Iy = const, and k = 5/4
when Iy = const.

The evolution is approximately selfsimilar. This should should be true during the entire radiation-
dominated era, which covers at least 24 orders of magnetitude, at least from the time of the electroweak
era at tpn &~ 1075 to the time of recombination at ¢y, &~ 370,000 yr &~ 10'3s. After that, we still have
to cover 4.6 orders of magnitude to tpn ~ 13.8 Gyr ~ 4 x 10'7s. So what does this mean for the magnetic
field today? How much magnetic field will have survived and what is its length scale today? To answer
these questions, we have to understand how the physics changes during this time and how this affects
the inverse cascade behavior.

1 From a radiation fluid to a baryon fluid

An important change is that during the radiation-dominated era, the plasma was a radiation fluid where
the pressure is p = p,¢? and ¢2 = ¢?/3. After that, radiation became dynamically unimportant and the
plasma became a baryon fluid with the density py,. Also the time evolution of the scale factor changed
from a(tpn) x tll)l/f to a(tpn) ti{f. However, during the process of recombination, the baryon fluid was
still strongly coupled to the photons through photon drag and the momentum equation reads
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where o = 4x.p 0rn/3myc is the photon drag relaxation rate with z. being the ionization fraction,
pvc2 is the radiation energy density, oy, is the Thomson cross section, and m,, is the proton mass. The
effects of this drag were already studied by [Banerjee & Jedamzik (2004), and especially in recent times
in attempts to alleviate the Hubble tension (Jedamzik & Pogosian, 2020; [Jedamzik et al), 12021, 2025).

2 Effect of drag on the diagnostic diagram

What happens when drag is turned on during a short interval, but then turned off again? The answer
is—surprisingly—mnot much!

We use the 2-D run 2m6 of BNV24 as reference run. It has a resolution of 163842 meshpoints and a
magnetic Prandtl number of 10. We add a drag term —awu to the momentum equation, but keep it on
only for a certain time interval. Figure [Il shows the effect on the Lundquist number and the parameter
C’M = vat/Em. After some excursion, both values seem to return to the original track. Figure 2l shows
that by ¢ = 100 and 200, the evolution is back on track!

In 2-D, we expect &y ~ t1/2 and va ~ t~1/2. Therefore, we expect Lu = const and vat/ém = const.
We see that, when drag is acting, Lu o< va&y increases, and when it is off again, it decreases. Figure
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Figure 1: Two versions of useful compensated plots showing time dependences of Lu = va&y/n (scaled
by 107°) and Cy = vat/&v. In both panels, the dotted lines apply to an initial condition with a different
set of random phases compared to the run shown as black lines.
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Figure 2: Diagnostic diagram showing Run 2m6 of BNV24 in black, and runs with o = 1 (blue) and 10
(red) being turned on during 10 < ¢ < 20. The open symbols denote the times ¢ = 20 when the drag is
turned off again. The filled symbols denote the times 100 and 200. In 2-D, we expext va fl\_/[l.
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Figure 3: Time dependences of &y and &y.

shows that, when drag is acting, &\ increases by more than the amount by which vs decreases. This
explains why Lu o< vaéy increases. When drag is off again, va falls off less rapidly and &y increases less
rapidly. This explains why Lu o vaé&y decreases again.

3 Change of the scale factor

During the transition from radiation to matter domination, there are many different changes to the
magnetic field evolution: the electrons, and thereby also the baryons, gradually decouple from the photon
fluid, so the magnetic field is no longer controlled by radiation, but by the gas motions. Furthermore,
the degree of ionization and other thermodynamic quantities changed with time. Also, of course, the
temporal dependence of the scale factor of the Universe changed. These effects have been incorporated
in studies of primordial magnetic field evolution (Jedamzik et all, [2025). An important motivation for
such studies is the fact that around the time of recombination, magnetic fields may have led to significant
density fluctuations that increased the recombination rate and lowered the sound horizon. This, in turn,
might have led to a smaller Hubble parameter at that time, which would alleviate the Hubble tension
(Jedamzik & Pogosiaxl, [2020).

The strong damping of the fluid motions would stop the inverse cascade. After the end of the recom-
bination epoch, however, when the plasma has decoupled from the radiation, the electric conductivity
is still large enough for the magnetic field to interact with the gas. One therefore expects the inverse
cascade to resume. The study of its continued evolution is important for setting the stage for detailed
low-redshift simulations (?).

Simulations of the matter-dominated low-redshift universe are usually performed using supercomoving

coordinates (Jedamzik et all, [2025), where the conformal time is given by

by = /dtph/a" (2)
with either n = 2 (Martel & Shapird,1998), n = 3/2 (Banerjee & Jedamzik, 2004; lJedamzik et all,[2025),

as opposed to n = 1 for the usual comoving coordinates. The subscript ‘ph’ indicates physical variables
and is sometimes also applied as a superscript. In the two cases with n = 2 and n = 3/2, the momentum
equation has a term that depends on a(t,). In the first case, there is an a(t,) factor in front of the
Lorentz force, while in the second case there is a modified Hubble drag term. In addition, the comoving
velocity is different: uy = a(t2) upy for n = 2 and wugz/; = al/? upn for n = 3/2, as opposed to u1 = upp
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Figure 4: Dependence of ¢y, on ¢, for (a) n = 1, (b) n = 3/2, and (¢) n = 2, obtained by solving
Equation (&) with Qaq = 107 and Qa = 0.73, as well well as Hy = 0.0692 Gyr ' ~ 0.71 km/skpcfl.
The dashed-dotted lines denote z = 1100 at t,, = 370,000yr and z = 0 at t,n = 13.8 Gyr, while the
dotted lines denote a = 3.7 x 10™% at tph = 7.4 x 107° Gyr and a = 0.72 at t,, = 9.6 Gyr.

for n = 1. Thus, we can capture all three cases by writing
w, = a" " upy. (3)

Furthermore, in all three cases, the comoving magnetic field is given by B = a(t,,)? By Therefore, the
comoving B is the same for all values of n, so it does not need to carry the subscript n. The scale factor
a(t,) is the same regardless of whether the physical or conformal times are used, and what the value of
n is.

The comoving baryon density py, is given by p, = a(t,)?3 pﬁh, while in the third case only the comoving
radiation energy density p, is modeled and it is related to the physical one via p, = a(tn)‘lpgh. In the

radiation-dominated era, we have pgh > pgh, so the evolution of baryons can be neglected, while in the

matter-dominated era we have pgh < pgh, and the radiation can be neglected.

In principle, one should solve for both py, and p,, as well as their corresponding velocities, which
are mutually coupled through photon drag. Photon drag is particularly important around the time of
recombination. The energy density of the primordial magnetic field may well exceed the thermal energy
density of the baryons, which can lead to strongly supersonic motions with significant local densit,
enhancements, as already mentioned above. Those are also referred to as baryon clumps
) and are of interest for alleviating the Hubble tension (Jedamzik & Pogosian, 2020).

Not much is known about the magnetic field evolution for the two variants of supercomoving coor-
dinates. Both describes the same same physics, so the inverse cascade of the magnetic field should be
exactly the same same. However, numerical effects such as the changing effective resolution may af-
fect the result. This was recently demonstrated in studies of gravitational collapse using supercomoving
coordinates with n = 2 (Brandenburg & Ntormousi, 2025).

Here, we want to study and compare the effects caused by the different comoving coordinate systems
with n = 3/2 and n = 2. The two coordinate systems apply to arbitrary time dependencies of a(t,). To
isolate this comparison from other complications, we will assume conditions where the fluid motions are
always subsonic and no photon drag is present. This allows us to focus on possible effects on the inverse
cascade behavior.

We note in passing that [Martel & Shapird (IL%S) also discuss a variant of comoving coordinates in
which the magnetic field scales differently with a(t,,), but this variant, which implies an anti-drag term
in the induction equation, will not discussed in the present paper. The differences in the momentum
equation will be discussed below.




4 Superconformal coordinates

As discussed in the introduction, superconformal coordinates are defined through d¢ = dtpn/a™, where
n = 3/2 (Banerjee & Jedamzik, 2004) or n = 2 (Martel & Shapiro, 1998) and ¢}, is the physical (or
cosmic) time. To obtain a(t,), we assume a standard ACDM universe and integrate dIna/dtpn = H(a),
where

H((l) = HO \/Qrad/a4 + Qmat/ag + QA (4)

is the prescribed dependence of the Hubble parameter on a(t,). We work with conformal time ¢, use
d/dtpn = a~"d/d¢, and integrate to obtain t,p(t,) and a(t,), i.e.,

d(tl—lzh =a" and diir;a =a"H(a). (5)

To obtain the initial conditions for early times, we consider the limit a — 0, so Equation () becomes
H(a) = HOQl/Z/ag. We then integrate tpn = [ da/(aH), which yields tp, = a2/(2H091/2), ie, a=

rad rad

(QHOQiﬁ tph)l/ 2. This relation is independent of n, but assumes that we start at a redshift that is well in

the radiation-dominated era. Here we consider the initial redshifts z, = 4500, the value also considered
by Jedamzik et al) (2025), and z, = 10°. Thus, we solve Equation (Gl with the initial conditions

a=a,=1/(1+2), tw="th=ad/2HQ). (6)
In our three-dimensional hydromagnetic simulations, the comoving time step dt is governed by the usual
Courant—Friedrich-Levy condition 6t < Coprd2z/Umax, where Upay is the maximum propagation speed
of all the wave modes that are present in the simulation. In the present case, Uy ax is mostly controlled by
the sound speed ¢, but also the magnetic field enters through the Alfvén speed va and the fluid motions
through |ul.

In Figured we compare the dependence of ¢, (t,,) for n = 2, 3/2, and 1 using 2z, = 4500 and 10° and a
constant time step. The range 10® > a(t,) > 1, corresponding to the time interval from recombination to
the present time, tpres, is marked by dashed-dotted lines. We see that the dependence ¢pn(t,,) is concave
for n = 2 and convex for n = 1, but approximately linear for n = 3/2. This indicates that the exponent
n = 3/2 distributes the instantaneous change in t,,(¢,) approximately uniformly over the interval from
recombination to fpres.

We recall that in all cases, our initial conformal time is always zero. However, when comparing
ton(tn) for different initial redshifts, we can make the curves overlap by adding a suitable offset ¢,,(0) to
tn — tn+1,(0) for the runs with the smaller initial redshift. We see that the curves for z, = 4500 and 10°
overlap well, although there is a very small difference at the very beginning of the runs with z, = 4500
relative to those with z, = 10°.

4.1 Governing equations

Both in the supercomoving as well as the ordinary comoving coordinates, the continuity and uncurled
induction equations are the same as those in physical coordinates, i.e., we have

Dlnpy/Dt, = =V -y, (7)
DA/t, = u, x (B + By) +1,V*A, (8)

where D/Dt,, = 9/0t,, + u,, - V is the advective derivative and B = V x A is the departure of the
magnetic field from a uniform imposed field By that is applied in a few cases for test purposes. It is only
the momentum equation where the scale factor a(t,,) and/or its time derivative, H = dIna/dt,n, appear.
For n = 3/2, this equation takes the form (Banerjee & Jedamzik, [2004)

DU3/2
Dt3/2

= —,Vinp, — (s + 3 H)us)o 9)

+ pp' [ x (B+ Bgy)+ V- (2v3/2053)2)] »



where S,, is the rate-of-strain tensor with the components S7; = (9;u} + d;u})/2 — 6;;V - u, /3, and
n is applied as a superscript when the vector components are already indicated by a subscript. Here,
J =V x B/pug is the current density and po is a vacuum permeability. Note that the viscosity term
involving v, for n = 3/2 was not included in the original work of Banerjee & Jedamzik (2004). In
Equation (@), we have both a physical drag term « and a Hubble drag term H = d*?H.

In Equation (@), the comoving sound speed is modified and given by

Cp = a’ﬂ—l Cph' (10)

Thus, for n > 1, ¢, would increase with time if c,;, were constant. In reality, cp, is not constant. A

reasonable approximation is to assume that c}%h is proportional to the temperature and thereby to a~*.

Thus, if instead a~! cih = const, then also cg /2= a*3 c}%res = const. This is also what will be assumed
in the following, where cpres = cpn (tpres)-

A relation similar to Equation (I{), but between the physical and kinematic viscosities is given by
VUp = an72l/ph7 (11)

and similarly for the magnetic diffusivity, 7, = a™ 1.
For n = 2, the momentum equation takes the form (7Martel & Shapiro, [1998), i.e.,

DUQ
Dt,

= —c%Vlnpb — QaUy (12)
+p;,  al(tn) I x (B + Bo) + V - (2v2p52)]

so there is no Hubble drag. Instead, there is now an a(t,) factor in front of the Lorentz force.
More generally, for any value of n, we can write

Du,,
Dt,

+pp ! [a*" 2T x (B+ Bo) + V- (2unpbSn)]

where H,, = (2—n)a™H, so it vanishes for n = 2, wile for n = 3/2, the a(t,) term in front of the Lorentz
force becomes unity. Alfvén speed is also modified by the 2”3 factor in front of the Lorentz force and
is thus v/&”) = a”*3/23rms/\/p*b.

If we want to compare runs with different values of n and the same physical sound speed, an additional
factor with a certain power of a(t,) would enter. In fact, it is the same prefactor as in front of the Lorentz
force in Equation (3]), which is unity for n = 3/2.

Note that for n < 3/2, the factor "3 in the effective Lorentz force is larger than unity when a < 1,
i.e., at very early times. This could imply that for n < 3/2, a certain magnetic field produces a large
feedback on the flow at early times when a <« 1. However, as discussed just above, the effective sound
speed is also larger, so the magnetic feedback on the flow is actually the same same as for other value of
n.

We recall that the effective comoving viscosity is v, = a™2vpp. At early times, it is much larger than
vpn if n < 2. If we want to maintain the same physical viscosity and magnetic diffusivity, we must keep
vp/a™ % and 1, /a™~? unchanged. Therefore, to reproduce an n = 3/2 run with constant V32 = 1372, We
would need to set v, = an73/21/3/2 and n, = a"*3/21/3/2, i.e., the viscosity and magnetic diffusivity can
be smaller in the beginning of the simulation. This agrees with our initial experience.

4.2 Transformation to physical coordinates

We have xpn = xalt,), kpn = k/a(t,), Bpn = BJa?, EY'(kpn) = Ewm(k)/a®. Since (B2)/2 =
J Ell\)/[h(kph) dkpn = [ Eam(k)dk/a* = (B?)/2a*, this scaling obeys the expected a~* scaling of the physical
magnetic energy density (in the absence of turbulence).



The physical density is related to the comoving one via pﬁh = pp/a?, and therefore the physical Alfvén
velocity, v} = BPR_/(oph™)'/2, is related to the comoving one via v} = vgn)/ a'/?. However, in view
of the a—dependent term in front of the Lorentz force, the comoving Alfvén velocity is proportional to

a™~3/2. Therefore, the scaling of va agrees with those of ¢, and w,; see Equation (3)).

4.3 Numerical solutions

We perform numerical simulations using the PENCIL CODE (7). The modifications in Equation (I3)
can be invoked by using the module SPECIAL=special/Lambda_CDM. For most of our three-dimensional
simulations, we use a resolution of 1024 meshpoints.

4.4 Tests

Given that we adopt periodic boundary conditions for all physical fields, the case of Alfvén waves is
somewhat unusual, because there must be an imposed field that must then be treated as a given, time-
dependent quantity. Thus, we work with B — By + V x A, where A is periodic. In that case, By enters
on the right-hand side of Equations ([8)—(I2) and Equation (I3).

5 Sound waves

To simulate sound waves, we use as initial conditions Inp = Magsinkx and uz/, = Magsinkz. We
assume that c3/; = const = 1km/s, which means that cs pn = a x 1km/s, i.e., csopn = 103km/s at our
initial value of a = 1076.

In Figure [l we compare the evolution of those sound waves in a space-time diagram of upp (tph, Zph)
for n = 3/2 and n = 2 with k = 0.5kpc™" in both cases. This results in about 15 oscillations during
the matter-dominated epoch. The Mach number is 1073, and since cj5 s2 = const = 1km/s, we used
u3,, =107 km/s for n = 3/2 and uj = 10~ km/s for n = 2.

We use ug = 0.1c3/2, which is already large enough so that the sound wave steepens to develop a
shock after a finite time. To dissipate this shock, we use a viscosity v/, = 107% . For n = 2, we use
V= a1/2u3/2.

We define the matter dominated phase as the inverval when Quat/[a® (H/Hg)?] exceeds the value 1/2.
Prior to that, the expansion of the universe is dominated by radiation, so Qaq/[a* (H/Hg)?] > 1/2, and
after that by the A term, i.e., Qx/(H/Hg)? > 1/2. The corresponding values of t,, are 7.4 x 107° Gyr
and 9.6 Gyr.

During the matter-dominated era, a(tpn) ti{f. Thus, for n = 3/2, we have 3/, = HO_1 In ¢y, where
HO_1 ~ 13.8 Gyr is the age of the universe. During the time interval from 7.4 x 10=° Gyr to 9.6 Gyr, the
value of log,, t,n changes by about 5.1 (from —4.1 to +1). With ¢3/» = 1km/s and k& = 0.5 kpe ™!, we
have c3/2k3/2 ~ 0.5 Gyr— !, so the period of sound waves is about 13 Gyr. This corresponds to about
5.1/13 = 0.4 oscillations.

6 Inverse cascade

In Figure [l we compare the results for n = 3/2 and n = 2. The magnetic field is fully helical, so the
spectra should have the same height in the radiation-dominated epoch. Note also that the conformal
sound speed is always assumed to be constant in time.

Since a = 1 at the present time tpr.s = 13.8 Gyr, and since our length unit is kpc, our initial choice
for the size of the domain of (27)3 corresponds to (= 6kpc)3. This is not much, and therefore we have
also considered larger domains.
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Figure 5: Space-time diagram of upn(tpn, Zpn), weighted with a®® to compensate for the decay at late
times for n = 3/2 (top) and n = 2 (bottom) with k& = 0.5kpc™ " in both cases. The Mach number
is 1073, and since c3/2(tn) = const = 1km/s, we used ug/(0) = 1073 km/s in the first panel and
u2(0) = 10~%km/s in the second. The vertical dashed-dotted lines denote the beginning and end of the
matter-dominated phase.

7 Evolutionary tracks

Figure [[T] shows evolutionary tracks in the va—¢y diagram for Runs A—G. The lines for Runs A and B
overlap, which might not be surprising, because they only differ in the starting point (2, = 4500 and 106,
respectively). On the other hand, both have been initialized with the same initial field with a spectrum
that peaks at k = 200 ky. However, also Runs C and F overlap (green and dashed black lines), which
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Figure 7: Left: spectra in supercomoving coordinates for n = 3/2 at ¢ = 0.5, 4, 20, 60, 110, 165, 208,
and 213 for 1024 mesh points, corresponding to tpn = 3.6 x 107°, 5.3 x 1075, 2.1 x 1074, 3.3 x 1073,
6.4 x 1072, 1.3, and 58 Gyr for n = v = 2 x 107°%. Note that at high resolution, the peak amplitude does
not decrease—even for the last few times well in the matter-dominated epoch starting with 3.3 Myr. This
is surprising and suggests that the drag term is unimportant; we find Ht =~ 2/3 during the radiation-
dominated epoch and larger terms up to 3 at later times. On the other hand, Ht varies from 0.03 to
800. Right: same, but for n = 2 (Run E) for n = v = 2 x 10~7. The orange lines denote the conformal
times 34, 626, and 1238 (last time) (corresponding to physical times ¢, = 3.6 x 1075, 9.2 x 107°, and
3.0 x 1074 Gyr), or tpn = 36, 92, and 300kyr, but scaled by factors 1.3, 3, and 4.

only have in common the domain wavenumber k; = 0.1.

The lines vy = &v/13.8 Gyr and &y/400kyr match the points with ¢ = 13.8 Gyr and ¢ = 400 kyr.
Such a relation was only expected to apply for conformal coordinates (left plot), but there the points are
closer to &\i/10 and &\ /3, respectively.
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Figure 8: Left: physical spectra for a run with n = 3/2 starting at z = 10° at the times corresponding
to

toh = 1.3 x 1079, 3.3 x 1078, 3.6 x 1076, 1.3 x 1074, 1.7 x 1073.

Right: physical spectra for a run with n = 2 starting at z = 4500 (default so far) at the times corre-
sponding to t,, = 1.2 x 107°, ... 1.4 x 1074,

Software and Data Availability. The source code used for the simulations of this study, the PENCIL CODE
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Figure 9: Left: Physical rms magnetic field, B/a?, vs physical time for the run with n = 3/2 starting
at z = 10% (black) with v = 7 = 107%. and two runs with n = 2 starting also at z = 10% (blue) or at
z = 4500 (red), both with v = = 2 x 1077, Right: spectra in superconformal coordinates, but the
three spectra from the left plot are highlighted in dashed blue and the upscaled version in dashed orange.
Note that this correction factor makes the spectra stay at the same hight. Assuming that this correction
accounts for numerical insufficiencies, this result supports the notion that the full inverse cascading would
be preserved until matter domination.

(?), is freely available on https://github.com/pencil-code. The simulation setups and corresponding
input and reduced output data are freely available on http://norlx65.nordita.org/~brandenb/proj
ects/InvCasc-to-MatterDom.

Cn = Q"¢ Cref- (14)
Uy, = @™ Vpet. (15)
Nn = a"n Tref - (16)

Table 1: Scalings
NN My =My
-1 -0.5
+1 +0.5

N —

8

The goal is to reproduce an n = 3/2 run with n = 2 and n = 1:

n—3/2
Up =a / V3/2,

1/2
Vo =a / V3/2,
-1/2
V=a / V3/2,

2 _ 2(n-1) 2

Cn CsO,phys ’

11


https://github.com/pencil-code
http://norlx65.nordita.org/~brandenb/projects/InvCasc-to-MatterDom
http://norlx65.nordita.org/~brandenb/projects/InvCasc-to-MatterDom

c3 = a® o pys;

C% = Czo,phys»

C2 = @ Cs0,phys;

C1 = Cs0,phys;
w, = a" " ugy,. (17)
U2 = A Uph- (18)
Uug/y = al/? Uph. (19)
U1 = Uph. (20)
uQ:al/ng/g. (21)
(22)

—-1/2
U = a / 1!3/2.

So the Mach number remains unchanged.

References

Banerjee, R., & Jedamzik, K., “Evolution of cosmic magnetic fields: From the very early Universe, to
recombination, to the present,” Phys. Rev. D 70, 123003 (2004).

Brandenburg, A., & Ntormousi, E., “Magnetic field amplification during a turbulent collapse,” Astrophys.
J. 990, 223 (2025).

Brandenburg, A., Kahniashvili, T., & Tevzadze, A. G., “Nonhelical inverse transfer of a decaying turbu-
lent magnetic field,” Phys. Rev. Lett. 114, 075001 (2015).

Jedamzik, K., & Pogosian, L., “Relieving the Hubble Tension with Primordial Magnetic Fields,” Phys.
Rev. Lett. 125, 181302 (2020).

Jedamzik, K., Pogosian, L., & Zhao, G.-B., ¢
;7 Comm. Phys. 4, 123—-Why reducing the cosmic sound horizon alone can not fully resolve the Hubble
tension (2021).

Jedamzik, K., Abel, T., & Ali-Haimoud, Y., “Cosmic Recombination in the Presence of Primordial
Magnetic Fields,” J. Cosm. Astrop. Phys. 03, 12 (2025).

Martel, H., & Shapiro, P. R., “A convenient set of comoving cosmological variables and their application,”
Month. Not. Roy. Astron. Soc. 297, 467-485 (1998).

$Header: /var/cvs/brandenb/tex/teach/COSMOMAG26/5_during_recombination/notes.tex,v 1.5 2026/01/16 10:18:05 brandenb Exp $

12



L

1

e

Ll

Lo
IR R

L

1

L
sl
L 8
coee

L

1

>

ol

Lo
R B

1

L

2i(t)

(1)

0.8 1.0

2.0

T T

T

1.5

T T

T

1.0

T T

T T T T

L

|

TR R R R R

2.0

T T

T

1.5

T T

L

|

oo

—
(@)
L L

Figure 10: pq diagrams for Runs A-G.
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