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Handout 5: magnetic fields during recombination

We have seen that the structure of the magnetic field is characterized by some simple principles. Its
magnetic energy spectrum EM(k) has a k4 subinertial range up until some peak wavenumber kp. It
is then followed by an inertial range, where either EM ∝ k−5/3 or perhaps slightly steeper ∝ k−2

(Brandenburg et al., 2015).
As time goes on, kp decreases and is given by kp = ξM(t)−1, where ξM(t) ∝ tq follows a power law

where the value of q obtained from dimensional arguments: q = 2/3 when the mean magnetic helicity
density, IM = 〈A · B〉 is conserved, and q = 4/9 when the Hosking integral, IH is conserved. The
spectrum evolves underneath an envelope EM(k) ∝ kβ , where β = 0 when IM = const, and β = 3/2
when IH = const. The magnetic mean energy density is EM(t) =

∫

EM(k, t) dk and it always decays
like EM(t) ∝ t−p, where p = 2/3 when IM = const and p = 10/9 when IH = const. In the diagnostic
diagram, vA(t) versus ξM(t), we have vA ∝ ξ−κ

M , where where κ = 1/2 when IM = const, and κ = 5/4
when IH = const.

The evolution is approximately selfsimilar. This should should be true during the entire radiation-
dominated era, which covers at least 24 orders of magnetitude, at least from the time of the electroweak
era at tph ≈ 10−11 s to the time of recombination at tph ≈ 370, 000 yr ≈ 1013 s. After that, we still have
to cover 4.6 orders of magnitude to tph ≈ 13.8Gyr ≈ 4× 1017 s. So what does this mean for the magnetic
field today? How much magnetic field will have survived and what is its length scale today? To answer
these questions, we have to understand how the physics changes during this time and how this affects
the inverse cascade behavior.

1 From a radiation fluid to a baryon fluid

An important change is that during the radiation-dominated era, the plasma was a radiation fluid where
the pressure is p = ργc

3
s and c2s = c2/3. After that, radiation became dynamically unimportant and the

plasma became a baryon fluid with the density ρb. Also the time evolution of the scale factor changed

from a(tph) ∝ t
1/2
ph to a(tph) ∝ t

2/3
ph . However, during the process of recombination, the baryon fluid was

still strongly coupled to the photons through photon drag and the momentum equation reads

∂uph

∂t
= a3/2

[

−(H + α)uph − a−1
uph ·∇uph − ∇φ

a
+ ρ−1

b

(

−a−1
∇p+ Jph ×Bph + a−1

∇ · 2ρbνSph

)

]

,

(1)
where α = 4xeργσTh/3mpc is the photon drag relaxation rate with xe being the ionization fraction,
ργc

2 is the radiation energy density, σTh is the Thomson cross section, and mp is the proton mass. The
effects of this drag were already studied by Banerjee & Jedamzik (2004), and especially in recent times
in attempts to alleviate the Hubble tension (Jedamzik & Pogosian, 2020; Jedamzik et al., 2021, 2025).

2 Effect of drag on the diagnostic diagram

What happens when drag is turned on during a short interval, but then turned off again? The answer
is—surprisingly—not much!

We use the 2-D run 2m6 of BNV24 as reference run. It has a resolution of 163842 meshpoints and a
magnetic Prandtl number of 10. We add a drag term −αu to the momentum equation, but keep it on
only for a certain time interval. Figure 1 shows the effect on the Lundquist number and the parameter
C̃M = vAt/ξM. After some excursion, both values seem to return to the original track. Figure 2 shows
that by t = 100 and 200, the evolution is back on track!

In 2-D, we expect ξM ∼ t1/2 and vA ∼ t−1/2. Therefore, we expect Lu = const and vAt/ξM = const.
We see that, when drag is acting, Lu ∝ vAξM increases, and when it is off again, it decreases. Figure 3
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Figure 1: Two versions of useful compensated plots showing time dependences of Lu = vAξM/η (scaled
by 10−5) and C̃M = vAt/ξM. In both panels, the dotted lines apply to an initial condition with a different
set of random phases compared to the run shown as black lines.

Figure 2: Diagnostic diagram showing Run 2m6 of BNV24 in black, and runs with α = 1 (blue) and 10
(red) being turned on during 10 ≤ t ≤ 20. The open symbols denote the times t = 20 when the drag is
turned off again. The filled symbols denote the times 100 and 200. In 2-D, we expext vA ∝ ξ−1

M .
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Figure 3: Time dependences of ξM and EM.

shows that, when drag is acting, ξM increases by more than the amount by which vA decreases. This
explains why Lu ∝ vAξM increases. When drag is off again, vA falls off less rapidly and ξM increases less
rapidly. This explains why Lu ∝ vAξM decreases again.

3 Change of the scale factor

During the transition from radiation to matter domination, there are many different changes to the
magnetic field evolution: the electrons, and thereby also the baryons, gradually decouple from the photon
fluid, so the magnetic field is no longer controlled by radiation, but by the gas motions. Furthermore,
the degree of ionization and other thermodynamic quantities changed with time. Also, of course, the
temporal dependence of the scale factor of the Universe changed. These effects have been incorporated
in studies of primordial magnetic field evolution (Jedamzik et al., 2025). An important motivation for
such studies is the fact that around the time of recombination, magnetic fields may have led to significant
density fluctuations that increased the recombination rate and lowered the sound horizon. This, in turn,
might have led to a smaller Hubble parameter at that time, which would alleviate the Hubble tension
(Jedamzik & Pogosian, 2020).

The strong damping of the fluid motions would stop the inverse cascade. After the end of the recom-
bination epoch, however, when the plasma has decoupled from the radiation, the electric conductivity
is still large enough for the magnetic field to interact with the gas. One therefore expects the inverse
cascade to resume. The study of its continued evolution is important for setting the stage for detailed
low-redshift simulations (?).

Simulations of the matter-dominated low-redshift universe are usually performed using supercomoving
coordinates (Jedamzik et al., 2025), where the conformal time is given by

tn =

∫

dtph/a
n (2)

with either n = 2 (Martel & Shapiro, 1998), n = 3/2 (Banerjee & Jedamzik, 2004; Jedamzik et al., 2025),
as opposed to n = 1 for the usual comoving coordinates. The subscript ‘ph’ indicates physical variables
and is sometimes also applied as a superscript. In the two cases with n = 2 and n = 3/2, the momentum
equation has a term that depends on a(tn). In the first case, there is an a(tn) factor in front of the
Lorentz force, while in the second case there is a modified Hubble drag term. In addition, the comoving
velocity is different: u2 = a(t2)uph for n = 2 and u3/2 = a1/2 uph for n = 3/2, as opposed to u1 = uph
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Figure 4: Dependence of tph on tn for (a) n = 1, (b) n = 3/2, and (c) n = 2, obtained by solving
Equation (5) with Ωrad = 10−4 and ΩΛ = 0.73, as well well as H0 = 0.0692Gyr−1 ≈ 0.71 km/s kpc−1.
The dashed-dotted lines denote z = 1100 at tph = 370, 000 yr and z = 0 at tph = 13.8Gyr, while the
dotted lines denote a = 3.7× 10−4 at tph = 7.4× 10−5 Gyr and a = 0.72 at tph = 9.6Gyr.

for n = 1. Thus, we can capture all three cases by writing

un = an−1
uph. (3)

Furthermore, in all three cases, the comoving magnetic field is given by B = a(tn)
2 Bph. Therefore, the

comoving B is the same for all values of n, so it does not need to carry the subscript n. The scale factor
a(tn) is the same regardless of whether the physical or conformal times are used, and what the value of
n is.

The comoving baryon density ρb is given by ρb = a(tn)
3 ρphb , while in the third case only the comoving

radiation energy density ργ is modeled and it is related to the physical one via ργ = a(tn)
4ρphγ . In the

radiation-dominated era, we have ρphγ > ρphb , so the evolution of baryons can be neglected, while in the

matter-dominated era we have ρphγ < ρphb , and the radiation can be neglected.
In principle, one should solve for both ρb and ργ , as well as their corresponding velocities, which

are mutually coupled through photon drag. Photon drag is particularly important around the time of
recombination. The energy density of the primordial magnetic field may well exceed the thermal energy
density of the baryons, which can lead to strongly supersonic motions with significant local density
enhancements, as already mentioned above. Those are also referred to as baryon clumps (Jedamzik et al.,
2025) and are of interest for alleviating the Hubble tension (Jedamzik & Pogosian, 2020).

Not much is known about the magnetic field evolution for the two variants of supercomoving coor-
dinates. Both describes the same same physics, so the inverse cascade of the magnetic field should be
exactly the same same. However, numerical effects such as the changing effective resolution may af-
fect the result. This was recently demonstrated in studies of gravitational collapse using supercomoving
coordinates with n = 2 (Brandenburg & Ntormousi, 2025).

Here, we want to study and compare the effects caused by the different comoving coordinate systems
with n = 3/2 and n = 2. The two coordinate systems apply to arbitrary time dependencies of a(tn). To
isolate this comparison from other complications, we will assume conditions where the fluid motions are
always subsonic and no photon drag is present. This allows us to focus on possible effects on the inverse
cascade behavior.

We note in passing that Martel & Shapiro (1998) also discuss a variant of comoving coordinates in
which the magnetic field scales differently with a(tn), but this variant, which implies an anti-drag term
in the induction equation, will not discussed in the present paper. The differences in the momentum
equation will be discussed below.
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4 Superconformal coordinates

As discussed in the introduction, superconformal coordinates are defined through dt = dtph/a
n, where

n = 3/2 (Banerjee & Jedamzik, 2004) or n = 2 (Martel & Shapiro, 1998) and tph is the physical (or
cosmic) time. To obtain a(tn), we assume a standard ΛCDM universe and integrate d ln a/dtph = H(a),
where

H(a) = H0

√

Ωrad/a4 +Ωmat/a3 +ΩΛ (4)

is the prescribed dependence of the Hubble parameter on a(tn). We work with conformal time t, use
d/dtph = a−nd/dt, and integrate to obtain tph(tn) and a(tn), i.e.,

dtph
dt

= an and
d ln a

dt
= anH(a). (5)

To obtain the initial conditions for early times, we consider the limit a → 0, so Equation (4) becomes

H(a) = H0Ω
1/2
rad/a

2. We then integrate tph =
∫

da/(aH), which yields tph = a2/(2H0Ω
1/2
rad), i.e., a =

(2H0Ω
1/2
radtph)

1/2. This relation is independent of n, but assumes that we start at a redshift that is well in
the radiation-dominated era. Here we consider the initial redshifts z∗ = 4500, the value also considered
by Jedamzik et al. (2025), and z∗ = 106. Thus, we solve Equation (5) with the initial conditions

a = a∗ ≡ 1/(1 + z∗), tph = t∗ph ≡ a2
∗
/(2H0Ω

1/2
rad). (6)

In our three-dimensional hydromagnetic simulations, the comoving time step δt is governed by the usual
Courant–Friedrich–Levy condition δt ≤ CCFLδx/Umax, where Umax is the maximum propagation speed
of all the wave modes that are present in the simulation. In the present case, Umax is mostly controlled by
the sound speed c, but also the magnetic field enters through the Alfvén speed vA and the fluid motions
through |u|.

In Figure 4, we compare the dependence of tph(tn) for n = 2, 3/2, and 1 using z∗ = 4500 and 106 and a
constant time step. The range 103 ≥ a(tn) ≥ 1, corresponding to the time interval from recombination to
the present time, tpres, is marked by dashed-dotted lines. We see that the dependence tph(tn) is concave
for n = 2 and convex for n = 1, but approximately linear for n = 3/2. This indicates that the exponent
n = 3/2 distributes the instantaneous change in tph(tn) approximately uniformly over the interval from
recombination to tpres.

We recall that in all cases, our initial conformal time is always zero. However, when comparing
tph(tn) for different initial redshifts, we can make the curves overlap by adding a suitable offset tn(0) to
tn → tn+tn(0) for the runs with the smaller initial redshift. We see that the curves for z∗ = 4500 and 106

overlap well, although there is a very small difference at the very beginning of the runs with z∗ = 4500
relative to those with z∗ = 106.

4.1 Governing equations

Both in the supercomoving as well as the ordinary comoving coordinates, the continuity and uncurled
induction equations are the same as those in physical coordinates, i.e., we have

D ln ρb/Dtn = −∇ · un, (7)

∂A/∂tn = un × (B +B0) + ηn∇2
A, (8)

where D/Dtn = ∂/∂tn + un · ∇ is the advective derivative and B = ∇ × A is the departure of the
magnetic field from a uniform imposed field B0 that is applied in a few cases for test purposes. It is only
the momentum equation where the scale factor a(tn) and/or its time derivative, H = d ln a/dtph, appear.
For n = 3/2, this equation takes the form (Banerjee & Jedamzik, 2004)

Du3/2

Dt3/2
= −c23/2∇ ln ρb − (α3/2 +

1
2H̃)u3/2 (9)

+ ρ−1
b

[

J × (B +B0) +∇ · (2ν3/2ρbS3/2)
]

,
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where Sn is the rate-of-strain tensor with the components Snij = (∂iu
n
j + ∂ju

n
i )/2 − δij∇ · un/3, and

n is applied as a superscript when the vector components are already indicated by a subscript. Here,
J = ∇ × B/µ0 is the current density and µ0 is a vacuum permeability. Note that the viscosity term
involving νn for n = 3/2 was not included in the original work of Banerjee & Jedamzik (2004). In
Equation (9), we have both a physical drag term α and a Hubble drag term H̃ = a3/2H.

In Equation (9), the comoving sound speed is modified and given by

cn = an−1 cph. (10)

Thus, for n > 1, cn would increase with time if cph were constant. In reality, cph is not constant. A
reasonable approximation is to assume that c2ph is proportional to the temperature and thereby to a−1.

Thus, if instead a−1 c2ph = const, then also c23/2 = a2n−3 c2pres = const. This is also what will be assumed

in the following, where cpres ≡ cph(tpres).
A relation similar to Equation (10), but between the physical and kinematic viscosities is given by

νn = an−2νph, (11)

and similarly for the magnetic diffusivity, ηn = an−2ηph.
For n = 2, the momentum equation takes the form (?Martel & Shapiro, 1998), i.e.,

Du2

Dt2
= −c22∇ ln ρb − α2u2 (12)

+ρ−1
b [a(tn)J × (B +B0) +∇ · (2ν2ρbS2)] ,

so there is no Hubble drag. Instead, there is now an a(tn) factor in front of the Lorentz force.
More generally, for any value of n, we can write

Dun

Dtn
= −c2n∇ ln ρb − (αn +Hn)un (13)

+ρ−1
b

[

a2n−3
J × (B +B0) +∇ · (2νnρbSn)

]

,

where Hn = (2−n) anH, so it vanishes for n = 2, wile for n = 3/2, the a(tn) term in front of the Lorentz
force becomes unity. Alfvén speed is also modified by the a2n−3 factor in front of the Lorentz force and

is thus v
(n)
A = an−3/2Brms/

√
ρb.

If we want to compare runs with different values of n and the same physical sound speed, an additional
factor with a certain power of a(tn) would enter. In fact, it is the same prefactor as in front of the Lorentz
force in Equation (13), which is unity for n = 3/2.

Note that for n < 3/2, the factor a2n−3 in the effective Lorentz force is larger than unity when a ≪ 1,
i.e., at very early times. This could imply that for n < 3/2, a certain magnetic field produces a large
feedback on the flow at early times when a ≪ 1. However, as discussed just above, the effective sound
speed is also larger, so the magnetic feedback on the flow is actually the same same as for other value of
n.

We recall that the effective comoving viscosity is νn = an−2νph. At early times, it is much larger than
νph if n < 2. If we want to maintain the same physical viscosity and magnetic diffusivity, we must keep
νn/a

n−2 and ηn/a
n−2 unchanged. Therefore, to reproduce an n = 3/2 run with constant ν3/2 = η3/2, we

would need to set νn = an−3/2ν3/2 and ηn = an−3/2ν3/2, i.e., the viscosity and magnetic diffusivity can
be smaller in the beginning of the simulation. This agrees with our initial experience.

4.2 Transformation to physical coordinates

We have xph = xa(tn), kph = k/a(tn), Bph = B/a2, Eph
M (kph) = EM(k)/a3. Since 〈B2

ph〉/2 =
∫

Eph
M (kph) dkph =

∫

EM(k) dk/a4 = 〈B2〉/2a4, this scaling obeys the expected a−4 scaling of the physical
magnetic energy density (in the absence of turbulence).
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The physical density is related to the comoving one via ρphb = ρb/a
3, and therefore the physical Alfvén

velocity, vphA = Bph
rms/(µ0ρ

ph
0 )1/2, is related to the comoving one via vphA = v

(n)
A /a1/2. However, in view

of the a–dependent term in front of the Lorentz force, the comoving Alfvén velocity is proportional to
an−3/2. Therefore, the scaling of vA agrees with those of cn and un; see Equation (3).

4.3 Numerical solutions

We perform numerical simulations using the Pencil Code (?). The modifications in Equation (13)
can be invoked by using the module SPECIAL=special/Lambda CDM. For most of our three-dimensional
simulations, we use a resolution of 10243 meshpoints.

4.4 Tests

Given that we adopt periodic boundary conditions for all physical fields, the case of Alfvén waves is
somewhat unusual, because there must be an imposed field that must then be treated as a given, time-
dependent quantity. Thus, we work with B → B0+∇×A, where A is periodic. In that case, B0 enters
on the right-hand side of Equations (8)–(12) and Equation (13).

5 Sound waves

To simulate sound waves, we use as initial conditions ln ρ = Ma0 sin kx and u3/2 = Ma0 sin kx. We
assume that c3/2 = const = 1 km/s, which means that cs0,ph = a× 1 km/s, i.e., cs0,ph = 103 km/s at our
initial value of a = 10−6.

In Figure 5, we compare the evolution of those sound waves in a space-time diagram of uph(tph, xph)
for n = 3/2 and n = 2 with k = 0.5 kpc−1 in both cases. This results in about 15 oscillations during
the matter-dominated epoch. The Mach number is 10−3, and since c3/2 = const = 1 km/s, we used
u0
3/2 = 10−3 km/s for n = 3/2 and u0

2 = 10−6 km/s for n = 2.
We use u0 = 0.1 c3/2, which is already large enough so that the sound wave steepens to develop a

shock after a finite time. To dissipate this shock, we use a viscosity ν3/2 = 10−4 . For n = 2, we use

ν = a1/2ν3/2.
We define the matter dominated phase as the inverval when Ωmat/[a

3 (H/H0)
2] exceeds the value 1/2.

Prior to that, the expansion of the universe is dominated by radiation, so Ωrad/[a
4 (H/H0)

2] > 1/2, and
after that by the Λ term, i.e., ΩΛ/(H/H0)

2 > 1/2. The corresponding values of tph are 7.4 × 10−5 Gyr
and 9.6Gyr.

During the matter-dominated era, a(tph) ∝ t
2/3
ph . Thus, for n = 3/2, we have t3/2 = H−1

0 ln tph, where

H−1
0 ≈ 13.8Gyr is the age of the universe. During the time interval from 7.4× 10−5 Gyr to 9.6Gyr, the

value of log10 tph changes by about 5.1 (from −4.1 to +1). With c3/2 = 1km/s and k = 0.5 kpc−1, we

have c3/2k3/2 ≈ 0.5Gyr−1, so the period of sound waves is about 13Gyr. This corresponds to about
5.1/13 = 0.4 oscillations.

6 Inverse cascade

In Figure 7, we compare the results for n = 3/2 and n = 2. The magnetic field is fully helical, so the
spectra should have the same height in the radiation-dominated epoch. Note also that the conformal
sound speed is always assumed to be constant in time.

Since a = 1 at the present time tpres = 13.8Gyr, and since our length unit is kpc, our initial choice
for the size of the domain of (2π)3 corresponds to (≈ 6 kpc)3. This is not much, and therefore we have
also considered larger domains.
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Figure 5: Space-time diagram of uph(tph, xph), weighted with a0.8 to compensate for the decay at late
times for n = 3/2 (top) and n = 2 (bottom) with k = 0.5 kpc−1 in both cases. The Mach number
is 10−3, and since c3/2(tn) = const = 1 km/s, we used u3/2(0) = 10−3 km/s in the first panel and
u2(0) = 10−6 km/s in the second. The vertical dashed-dotted lines denote the beginning and end of the
matter-dominated phase.

7 Evolutionary tracks

Figure 11 shows evolutionary tracks in the vA–ξM diagram for Runs A–G. The lines for Runs A and B
overlap, which might not be surprising, because they only differ in the starting point (z∗ = 4500 and 106,
respectively). On the other hand, both have been initialized with the same initial field with a spectrum
that peaks at k = 200 k0. However, also Runs C and F overlap (green and dashed black lines), which
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Figure 6: Similar to Figure 5, but for Alfven waves.
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Figure 7: Left: spectra in supercomoving coordinates for n = 3/2 at t = 0.5, 4, 20, 60, 110, 165, 208,
and 213 for 10243 mesh points, corresponding to tph = 3.6 × 10−5, 5.3 × 10−5, 2.1 × 10−4, 3.3 × 10−3,
6.4× 10−2, 1.3, and 58Gyr for η = ν = 2× 10−6. Note that at high resolution, the peak amplitude does
not decrease—even for the last few times well in the matter-dominated epoch starting with 3.3Myr. This
is surprising and suggests that the drag term is unimportant; we find Ht ≈ 2/3 during the radiation-
dominated epoch and larger terms up to 3 at later times. On the other hand, H̃t varies from 0.03 to
800. Right: same, but for n = 2 (Run E) for η = ν = 2 × 10−7. The orange lines denote the conformal
times 34, 626, and 1238 (last time) (corresponding to physical times tph = 3.6 × 10−5, 9.2 × 10−5, and
3.0× 10−4 Gyr), or tph = 36, 92, and 300 kyr, but scaled by factors 1.3, 3, and 4.

only have in common the domain wavenumber k1 = 0.1.
The lines vA = ξM/13.8Gyr and ξM/400 kyr match the points with t = 13.8Gyr and t = 400 kyr.

Such a relation was only expected to apply for conformal coordinates (left plot), but there the points are
closer to ξM/10 and ξM/3, respectively.

Figure 8: Left: physical spectra for a run with n = 3/2 starting at z = 106 at the times corresponding
to
tph = 1.3× 10−9, 3.3× 10−8, 3.6× 10−6, 1.3× 10−4, 1.7× 10−3.
Right: physical spectra for a run with n = 2 starting at z = 4500 (default so far) at the times corre-
sponding to tph = 1.2× 10−5, ... 1.4× 10−4.

Software and Data Availability. The source code used for the simulations of this study, the Pencil Code
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Figure 9: Left: Physical rms magnetic field, B/a2, vs physical time for the run with n = 3/2 starting
at z = 106 (black) with ν = η = 10−6. and two runs with n = 2 starting also at z = 106 (blue) or at
z = 4500 (red), both with ν = η = 2 × 10−7. Right: spectra in superconformal coordinates, but the
three spectra from the left plot are highlighted in dashed blue and the upscaled version in dashed orange.
Note that this correction factor makes the spectra stay at the same hight. Assuming that this correction
accounts for numerical insufficiencies, this result supports the notion that the full inverse cascading would
be preserved until matter domination.

(?), is freely available on https://github.com/pencil-code. The simulation setups and corresponding
input and reduced output data are freely available on http://norlx65.nordita.org/~brandenb/proj

ects/InvCasc-to-MatterDom.

cn = anc cref . (14)

νn = anν νref . (15)

ηn = anη ηref . (16)

Table 1: Scalings
n nc nν = nη

1 −1 −0.5
2 +1 +0.5

8

The goal is to reproduce an n = 3/2 run with n = 2 and n = 1:

νn = an−3/2ν3/2,

ν2 = a1/2ν3/2,

ν1 = a−1/2ν3/2,

c2n = a2(n−1) c2s0,phys,
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c22 = a2 c2s0,phys,

c21 = c2s0,phys,

c2 = a cs0,phys,

c1 = cs0,phys,

un = an−1
uph. (17)

u2 = auph. (18)

u3/2 = a1/2 uph. (19)

u1 = uph. (20)

u2 = a1/2 u3/2. (21)

u1 = a−1/2
u3/2. (22)

So the Mach number remains unchanged.
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Figure 10: pq diagrams for Runs A–G.
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Figure 11: vA–ξM diagram for the same 7 runs (black, blue, green, orange, red, black dashed, blue
dashed) as in Figure 10 for (a) conformal and (b) physical variables. Note that in (a), the solid blue
and black lines for Runs A and B overlap. The filled (open) symbols denote the times t = 13.8Gyr and
400 kyr, respectively.
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